Frontiers of Mathematics in China >
Mean-square estimate of automorphic L-functions
Received date: 17 May 2019
Accepted date: 19 Jan 2020
Published date: 15 Feb 2020
Copyright
Let f be a holomorphic Hecke cusp form with even integral weight for the full modular group, and let be a primitive Dirichlet character modulo q. Let be the automorphic L-function attached to f and . We study the mean-square estimate of and establish an asymptotic formula.
Key words: Automorphic L-function; cusp form; Fourier coe_cient
Weili YAO . Mean-square estimate of automorphic L-functions[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 205 -213 . DOI: 10.1007/s11464-020-0817-1
1 |
Blomer V. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926
|
2 |
Blomer V, Harcos G. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79
|
3 |
Deligne P. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172
|
4 |
Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307
|
5 |
Duke W, Friedlander J B, Iwaniec H. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8
|
6 |
Hafner J L, Ivić A. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382
|
7 |
Harcos G. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365
|
8 |
Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
|
9 |
Lau Y-K, Lü G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716
|
10 |
Rankin R A. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372
|
11 |
Sarnak P. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453
|
12 |
Selberg A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50
|
13 |
Shimura G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971
|
14 |
Yi Y, Zhang W P. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180
|
/
〈 | 〉 |