RESEARCH ARTICLE

Mean-square estimate of automorphic L-functions

  • Weili YAO
Expand
  • Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 17 May 2019

Accepted date: 19 Jan 2020

Published date: 15 Feb 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let f be a holomorphic Hecke cusp form with even integral weight k2 for the full modular group, and let χ be a primitive Dirichlet character modulo q. Let Lf(s,χ) be the automorphic L-function attached to f and χ. We study the mean-square estimate of Lf(s,χ) and establish an asymptotic formula.

Cite this article

Weili YAO . Mean-square estimate of automorphic L-functions[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 205 -213 . DOI: 10.1007/s11464-020-0817-1

1
Blomer V. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926

DOI

2
Blomer V, Harcos G. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79

DOI

3
Deligne P. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172

DOI

4
Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307

DOI

5
Duke W, Friedlander J B, Iwaniec H. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8

DOI

6
Hafner J L, Ivić A. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382

7
Harcos G. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365

DOI

8
Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997

DOI

9
Lau Y-K, Lü G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716

DOI

10
Rankin R A. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372

DOI

11
Sarnak P. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453

DOI

12
Selberg A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50

13
Shimura G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971

14
Yi Y, Zhang W P. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180

DOI

Outlines

/