Mean-square estimate of automorphic L-functions

Weili YAO

PDF(248 KB)
PDF(248 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 205-213. DOI: 10.1007/s11464-020-0817-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Mean-square estimate of automorphic L-functions

Author information +
History +

Abstract

Let f be a holomorphic Hecke cusp form with even integral weight k2 for the full modular group, and let χ be a primitive Dirichlet character modulo q. Let Lf(s,χ) be the automorphic L-function attached to f and χ. We study the mean-square estimate of Lf(s,χ) and establish an asymptotic formula.

Keywords

Automorphic L-function / cusp form / Fourier coe_cient

Cite this article

Download citation ▾
Weili YAO. Mean-square estimate of automorphic L-functions. Front. Math. China, 2020, 15(1): 205‒213 https://doi.org/10.1007/s11464-020-0817-1

References

[1]
Blomer V. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926
CrossRef Google scholar
[2]
Blomer V, Harcos G. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79
CrossRef Google scholar
[3]
Deligne P. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172
CrossRef Google scholar
[4]
Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307
CrossRef Google scholar
[5]
Duke W, Friedlander J B, Iwaniec H. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8
CrossRef Google scholar
[6]
Hafner J L, Ivić A. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382
[7]
Harcos G. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365
CrossRef Google scholar
[8]
Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
CrossRef Google scholar
[9]
Lau Y-K, Lü G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716
CrossRef Google scholar
[10]
Rankin R A. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372
CrossRef Google scholar
[11]
Sarnak P. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453
CrossRef Google scholar
[12]
Selberg A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50
[13]
Shimura G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971
[14]
Yi Y, Zhang W P. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(248 KB)

Accesses

Citations

Detail

Sections
Recommended

/