Mean-square estimate of automorphic L-functions

Weili YAO

Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 205 -213.

PDF (248KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 205 -213. DOI: 10.1007/s11464-020-0817-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Mean-square estimate of automorphic L-functions

Author information +
History +
PDF (248KB)

Abstract

Let f be a holomorphic Hecke cusp form with even integral weight k2 for the full modular group, and let χ be a primitive Dirichlet character modulo q. Let Lf(s,χ) be the automorphic L-function attached to f and χ. We study the mean-square estimate of Lf(s,χ) and establish an asymptotic formula.

Keywords

Automorphic L-function / cusp form / Fourier coe_cient

Cite this article

Download citation ▾
Weili YAO. Mean-square estimate of automorphic L-functions. Front. Math. China, 2020, 15(1): 205-213 DOI:10.1007/s11464-020-0817-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blomer V. Shifted convolution sums and subconvexity bounds for automorphic L-functions. Int Math Res Not IMRN, 2004, 73: 3905–3926

[2]

Blomer V, Harcos G. Hybrid bounds for twisted L-functions. J Reine Angew Math, 2008, 621: 53–79

[3]

Deligne P. Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363. Lecture Notes in Math, Vol 179. Berlin: Springer, 1971, 139–172

[4]

Deligne P. La conjecture de Weil I. Publ Math Inst Hautes Études Sci, 1974, 43: 273–307

[5]

Duke W, Friedlander J B, Iwaniec H. Bounds for automorphic L-functions. Invent Math, 1993, 112: 1–8

[6]

Hafner J L, Ivić A. On sums of Fourier coefficients of cusp forms. Enseign Math, 1989, 35: 375–382

[7]

Harcos G. An additive problem in the Fourier coefficients of cusp forms. Math Ann, 2003, 326: 347–365

[8]

Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997

[9]

Lau Y-K, G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687–716

[10]

Rankin R A. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc Cambridge Philos Soc, 1939, 35: 351–372

[11]

Sarnak P. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J Funct Anal, 2001, 184: 419–453

[12]

Selberg A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch Math Naturvid, 1940, 43: 47–50

[13]

Shimura G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Princeton Univ Press, 1971

[14]

Yi Y, Zhang W P. On the 2k-th power mean of inversion of L-functions with the weight of the Gauss sum. Acta Math Sin (Engl Ser), 2004, 20: 175–180

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (248KB)

613

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/