RESEARCH ARTICLE

Representation of elliptic Ding-Iohara algebra

  • Lifang WANG , 1 ,
  • Ke WU 2 ,
  • Jie YANG 2 ,
  • Zifeng YANG 2
Expand
  • 1. School of Mathematics and Statistics, Henan university, Kaifeng 475004, China
  • 2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Received date: 22 Mar 2017

Accepted date: 14 Jan 2020

Published date: 15 Feb 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We define a vector representation V (u) of elliptic Ding-Iohara algebra U (q; t; p): Furthermore, we construct the tensor products of the vector representations and the Fock modules (u) by taking the inductive limit of certain subspaces in the finite tensor products of vector representations.

Cite this article

Lifang WANG , Ke WU , Jie YANG , Zifeng YANG . Representation of elliptic Ding-Iohara algebra[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 155 -166 . DOI: 10.1007/s11464-020-0815-3

1
Awata H,Feigin B, Hoshino A, Kanai M, Shiraishi J,Yanagida S. Notes on Ding-Iohara algebra and AGT conjecture. arXiv:1106.4088

2
Awata H, Feigin B, Shiraishi J. Quantum algebraic approach to refined topological vertex. J High Energy Phys, 2012, 03: 041

DOI

3
Awata H, Yamada Y. Five-dimensional AGT conjecture and the Deformed Virasoro algebra. J High Energy Phys, 2010, 01: 125

DOI

4
AwataH, Yamada Y. Five-dimensional AGT relation and the Deformed β-ensemble. Progr Theor Phys, 2010, 124: 227–262

DOI

5
Cai L Q, Wang L F, Wu K, Yang J. Operator product formulas in the algebraic approach of the refined topological vertex. Chin Phys Lett, 2013, 30: 020306

DOI

6
Cai L Q, Wang L F, Wu K, Yang J. Fermion representation of quantum toroidal algebra. Commun Theor Phys (Beijing), 2014, 61: 403–408

DOI

7
Cai L Q, Wang L F, Wu K, Yang J. The Fermion representation of quantum toroidal algebra on 3D Young diagrams. Chin Phys Lett, 2014, 31: 070502

DOI

8
Ding J, Iohara K. Generalization of Drinfeld quantum affne algebras. Lett Math Phys, 1997, 41: 181–193

DOI

9
Feigin B, Feigin E, Jimbo M, Miwa T,Mukhin E. Quantum continuous gl: Semi-infinite construction of representations. Kyoto J Math, 2011, 51: 337–364

DOI

10
Feigin B, Hashizume K, Hoshino A, Shiraishi J, Yanagida S. A commutative algebra on degenerate ℂP1 and Macdonald polynomials. J Math Phys, 2009, 50: 095215

DOI

11
Feigin B, Jimbo M, Miwa T, Mukhin E. Quantum toroidal gl1 algebra: plane partitions. Kyoto J Math, 2012, 52: 621–659

DOI

12
Komori Y, Noumi M, Shiraishi J. Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA Symmetry Integrability Geom Methods Appl, 2009, 5: 054

DOI

13
Langmann E. Second quantization of the elliptic Calogero-Sutherland model. Comm Math Phys, 2004, 247: 321–351

DOI

14
Langmann E. Remarkable identities related to the (quantum) elliptic Calogero-Sutheland model. J Math Phys, 2006, 47: 022101

DOI

15
Miki K. A (q; γ) analog of the W1+∞ algebra. J Math Phys, 2007, 48: 123520

DOI

16
Nekrasov N, Pestun V. Seiberg-Witten geometry of four dimensional N= 2 quiver gauge theories. arXiv: 1211.2240

17
Nekrasov N, Pestun V, Shatashvili S. Quantum geometry and quiver gauge theories. arXiv: 1312.6689

18
Saito Y. Elliptic Ding-Iohara algebra and the free field realization of the Elliptic Macdonald operator. Publ Res Inst Math Sci, 2014, 50(3): 411–455

DOI

Outlines

/