Representation of elliptic Ding-Iohara algebra

Lifang WANG, Ke WU, Jie YANG, Zifeng YANG

PDF(289 KB)
PDF(289 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 155-166. DOI: 10.1007/s11464-020-0815-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Representation of elliptic Ding-Iohara algebra

Author information +
History +

Abstract

We define a vector representation V (u) of elliptic Ding-Iohara algebra U (q; t; p): Furthermore, we construct the tensor products of the vector representations and the Fock modules (u) by taking the inductive limit of certain subspaces in the finite tensor products of vector representations.

Keywords

Elliptic Ding-Iohara algebra / vector representation / partition

Cite this article

Download citation ▾
Lifang WANG, Ke WU, Jie YANG, Zifeng YANG. Representation of elliptic Ding-Iohara algebra. Front. Math. China, 2020, 15(1): 155‒166 https://doi.org/10.1007/s11464-020-0815-3

References

[1]
Awata H,Feigin B, Hoshino A, Kanai M, Shiraishi J,Yanagida S. Notes on Ding-Iohara algebra and AGT conjecture. arXiv:1106.4088
[2]
Awata H, Feigin B, Shiraishi J. Quantum algebraic approach to refined topological vertex. J High Energy Phys, 2012, 03: 041
CrossRef Google scholar
[3]
Awata H, Yamada Y. Five-dimensional AGT conjecture and the Deformed Virasoro algebra. J High Energy Phys, 2010, 01: 125
CrossRef Google scholar
[4]
AwataH, Yamada Y. Five-dimensional AGT relation and the Deformed β-ensemble. Progr Theor Phys, 2010, 124: 227–262
CrossRef Google scholar
[5]
Cai L Q, Wang L F, Wu K, Yang J. Operator product formulas in the algebraic approach of the refined topological vertex. Chin Phys Lett, 2013, 30: 020306
CrossRef Google scholar
[6]
Cai L Q, Wang L F, Wu K, Yang J. Fermion representation of quantum toroidal algebra. Commun Theor Phys (Beijing), 2014, 61: 403–408
CrossRef Google scholar
[7]
Cai L Q, Wang L F, Wu K, Yang J. The Fermion representation of quantum toroidal algebra on 3D Young diagrams. Chin Phys Lett, 2014, 31: 070502
CrossRef Google scholar
[8]
Ding J, Iohara K. Generalization of Drinfeld quantum affne algebras. Lett Math Phys, 1997, 41: 181–193
CrossRef Google scholar
[9]
Feigin B, Feigin E, Jimbo M, Miwa T,Mukhin E. Quantum continuous gl: Semi-infinite construction of representations. Kyoto J Math, 2011, 51: 337–364
CrossRef Google scholar
[10]
Feigin B, Hashizume K, Hoshino A, Shiraishi J, Yanagida S. A commutative algebra on degenerate ℂP1 and Macdonald polynomials. J Math Phys, 2009, 50: 095215
CrossRef Google scholar
[11]
Feigin B, Jimbo M, Miwa T, Mukhin E. Quantum toroidal gl1 algebra: plane partitions. Kyoto J Math, 2012, 52: 621–659
CrossRef Google scholar
[12]
Komori Y, Noumi M, Shiraishi J. Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA Symmetry Integrability Geom Methods Appl, 2009, 5: 054
CrossRef Google scholar
[13]
Langmann E. Second quantization of the elliptic Calogero-Sutherland model. Comm Math Phys, 2004, 247: 321–351
CrossRef Google scholar
[14]
Langmann E. Remarkable identities related to the (quantum) elliptic Calogero-Sutheland model. J Math Phys, 2006, 47: 022101
CrossRef Google scholar
[15]
Miki K. A (q; γ) analog of the W1+∞ algebra. J Math Phys, 2007, 48: 123520
CrossRef Google scholar
[16]
Nekrasov N, Pestun V. Seiberg-Witten geometry of four dimensional N= 2 quiver gauge theories. arXiv: 1211.2240
[17]
Nekrasov N, Pestun V, Shatashvili S. Quantum geometry and quiver gauge theories. arXiv: 1312.6689
[18]
Saito Y. Elliptic Ding-Iohara algebra and the free field realization of the Elliptic Macdonald operator. Publ Res Inst Math Sci, 2014, 50(3): 411–455
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(289 KB)

Accesses

Citations

Detail

Sections
Recommended

/