RESEARCH ARTICLE

Higher moment of coefficients of Dedekind zeta function

  • Guangwei HU ,
  • Ke WANG
Expand
  • School of Mathematics, Shandong University, Jinan 250100, China

Received date: 01 Aug 2019

Accepted date: 17 Jan 2020

Published date: 15 Feb 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let K3 be a non-normal cubic extension over .We study the higher moment of the coefficients aK3 (n) of Dedekind zeta function over sum of two squares n12+n22xaK3l(n12+n22),where 2≤l≤8 and n1,n2,l.

Cite this article

Guangwei HU , Ke WANG . Higher moment of coefficients of Dedekind zeta function[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 57 -67 . DOI: 10.1007/s11464-020-0816-2

1
Bourgain J. Decoupling, exponential sums and the Riemann zeta function. J Amer Math Soc, 2017, 30(1): 205–224

DOI

2
Chandrasekharan K, Good A. On the number of integral ideals in Galois extensions. Monatsh Math, 1983, 95(2): 99–109

DOI

3
Chandrasekharan K, Narasimhan R. The approximate functional equation for a class of zeta-functions. Math Ann, 1963, 152: 30–64

DOI

4
Fomenko O M. Mean values associated with the Dedekind zeta function. J Math Sci (N Y), 2008, 150(3): 2115–2122

DOI

5
Gelbart S, Jacquet H. A relation between automorphic representations of GL(2) and GL(3).Ann Sci Éc Norm Supér (4), 1978, 11: 471–542

DOI

6
Good A. The square mean of Dirichlet series associated with cusp forms. Mathematika 1982, 29(2): 278–295

DOI

7
Heath-Brown D R. The growth rate of the Dedekind zeta-function on the critical line. Acta Arith, 1988, 49(4): 323–339

DOI

8
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004

9
Jacquet H, Shalika J A. On Euler products and the classification of automorphic representations I. Amer J Math, 1981, 103(3): 499–558

DOI

10
Jacquet H, Shalika J A. On Euler products and the classification of automorphic forms II. Amer J Math, 1981, 103(4): 777–815

DOI

11
Jutila M. Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80. Berlin: Springer- Verlag, 1987

12
Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak). J Amer Math Soc, 2003, 16(1): 139–183

DOI

13
Kim H H, Shahidi F. Functorial products for GL2 × GL3 and the symmetric cube for GL2 (with an appendix by C. J. Bushnell and G. Henniart). Ann of Math, 2002, 155(2): 837–893

14
Kim H H, Shahidi F. Cuspidality of symmetric powers with applications. Duke Math J, 2002, 112: 177–197

DOI

15
Landau, E. Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. New York: Chelsea Publishing Company, 1949

16
Li X Q. Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann of Math, 2011, 173(1): 301–336

DOI

17
Lü G S. Mean values connected with the Dedekind zeta function of a non-normal cubic field. CEJOR Cent Eur J Oper Res, 2013, 11(2): 274–282

DOI

18
Lü G S, Wang Y H. Note on the number of integral ideals in Galois extensions. Sci China Math, 2010, 53(9): 2417–2424

DOI

19
Rudnick Z, Sarnak P. Zeros of principal L-functions and random matrix theory. Duke Math J, 1996, 81: 269–322

DOI

20
Shahidi F. On certain L-functions. Amer J Math, 1981, 103(2): 297–355

DOI

21
Shahidi F. Third symmetric power L-functions for GL(2).Compos Math, 1989, 70(3): 245–273

22
Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Stud Adv Math, 46. Cambridge: Cambridge Univ Press, 1995

23
Yang Z S. Ideal counting function in cubic fields. Front Math China, 2017, 12(4): 981–992

DOI

Outlines

/