Frontiers of Mathematics in China >
Higher moment of coefficients of Dedekind zeta function
Received date: 01 Aug 2019
Accepted date: 17 Jan 2020
Published date: 15 Feb 2020
Copyright
Let K3 be a non-normal cubic extension over .We study the higher moment of the coefficients aK3 (n) of Dedekind zeta function over sum of two squares ,where 2≤l≤8 and n1,n2,l∈.
Key words: Non-normal cubic field; Dedekind zeta function
Guangwei HU , Ke WANG . Higher moment of coefficients of Dedekind zeta function[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 57 -67 . DOI: 10.1007/s11464-020-0816-2
1 |
Bourgain J. Decoupling, exponential sums and the Riemann zeta function. J Amer Math Soc, 2017, 30(1): 205–224
|
2 |
Chandrasekharan K, Good A. On the number of integral ideals in Galois extensions. Monatsh Math, 1983, 95(2): 99–109
|
3 |
Chandrasekharan K, Narasimhan R. The approximate functional equation for a class of zeta-functions. Math Ann, 1963, 152: 30–64
|
4 |
Fomenko O M. Mean values associated with the Dedekind zeta function. J Math Sci (N Y), 2008, 150(3): 2115–2122
|
5 |
Gelbart S, Jacquet H. A relation between automorphic representations of GL(2) and GL(3).Ann Sci Éc Norm Supér (4), 1978, 11: 471–542
|
6 |
Good A. The square mean of Dirichlet series associated with cusp forms. Mathematika 1982, 29(2): 278–295
|
7 |
Heath-Brown D R. The growth rate of the Dedekind zeta-function on the critical line. Acta Arith, 1988, 49(4): 323–339
|
8 |
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004
|
9 |
Jacquet H, Shalika J A. On Euler products and the classification of automorphic representations I. Amer J Math, 1981, 103(3): 499–558
|
10 |
Jacquet H, Shalika J A. On Euler products and the classification of automorphic forms II. Amer J Math, 1981, 103(4): 777–815
|
11 |
Jutila M. Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80. Berlin: Springer- Verlag, 1987
|
12 |
Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak). J Amer Math Soc, 2003, 16(1): 139–183
|
13 |
Kim H H, Shahidi F. Functorial products for GL2 × GL3 and the symmetric cube for GL2 (with an appendix by C. J. Bushnell and G. Henniart). Ann of Math, 2002, 155(2): 837–893
|
14 |
Kim H H, Shahidi F. Cuspidality of symmetric powers with applications. Duke Math J, 2002, 112: 177–197
|
15 |
Landau, E. Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. New York: Chelsea Publishing Company, 1949
|
16 |
Li X Q. Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann of Math, 2011, 173(1): 301–336
|
17 |
Lü G S. Mean values connected with the Dedekind zeta function of a non-normal cubic field. CEJOR Cent Eur J Oper Res, 2013, 11(2): 274–282
|
18 |
Lü G S, Wang Y H. Note on the number of integral ideals in Galois extensions. Sci China Math, 2010, 53(9): 2417–2424
|
19 |
Rudnick Z, Sarnak P. Zeros of principal L-functions and random matrix theory. Duke Math J, 1996, 81: 269–322
|
20 |
Shahidi F. On certain L-functions. Amer J Math, 1981, 103(2): 297–355
|
21 |
Shahidi F. Third symmetric power L-functions for GL(2).Compos Math, 1989, 70(3): 245–273
|
22 |
Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Stud Adv Math, 46. Cambridge: Cambridge Univ Press, 1995
|
23 |
Yang Z S. Ideal counting function in cubic fields. Front Math China, 2017, 12(4): 981–992
|
/
〈 | 〉 |