Higher moment of coefficients of Dedekind zeta function

Guangwei HU, Ke WANG

PDF(277 KB)
PDF(277 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 57-67. DOI: 10.1007/s11464-020-0816-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Higher moment of coefficients of Dedekind zeta function

Author information +
History +

Abstract

Let K3 be a non-normal cubic extension over .We study the higher moment of the coefficients aK3 (n) of Dedekind zeta function over sum of two squares n12+n22xaK3l(n12+n22),where 2≤l≤8 and n1,n2,l.

Keywords

Non-normal cubic field / Dedekind zeta function

Cite this article

Download citation ▾
Guangwei HU, Ke WANG. Higher moment of coefficients of Dedekind zeta function. Front. Math. China, 2020, 15(1): 57‒67 https://doi.org/10.1007/s11464-020-0816-2

References

[1]
Bourgain J. Decoupling, exponential sums and the Riemann zeta function. J Amer Math Soc, 2017, 30(1): 205–224
CrossRef Google scholar
[2]
Chandrasekharan K, Good A. On the number of integral ideals in Galois extensions. Monatsh Math, 1983, 95(2): 99–109
CrossRef Google scholar
[3]
Chandrasekharan K, Narasimhan R. The approximate functional equation for a class of zeta-functions. Math Ann, 1963, 152: 30–64
CrossRef Google scholar
[4]
Fomenko O M. Mean values associated with the Dedekind zeta function. J Math Sci (N Y), 2008, 150(3): 2115–2122
CrossRef Google scholar
[5]
Gelbart S, Jacquet H. A relation between automorphic representations of GL(2) and GL(3).Ann Sci Éc Norm Supér (4), 1978, 11: 471–542
CrossRef Google scholar
[6]
Good A. The square mean of Dirichlet series associated with cusp forms. Mathematika 1982, 29(2): 278–295
CrossRef Google scholar
[7]
Heath-Brown D R. The growth rate of the Dedekind zeta-function on the critical line. Acta Arith, 1988, 49(4): 323–339
CrossRef Google scholar
[8]
Iwaniec H, Kowalski E. Analytic Number Theory. Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 2004
[9]
Jacquet H, Shalika J A. On Euler products and the classification of automorphic representations I. Amer J Math, 1981, 103(3): 499–558
CrossRef Google scholar
[10]
Jacquet H, Shalika J A. On Euler products and the classification of automorphic forms II. Amer J Math, 1981, 103(4): 777–815
CrossRef Google scholar
[11]
Jutila M. Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80. Berlin: Springer- Verlag, 1987
[12]
Kim H H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak). J Amer Math Soc, 2003, 16(1): 139–183
CrossRef Google scholar
[13]
Kim H H, Shahidi F. Functorial products for GL2 × GL3 and the symmetric cube for GL2 (with an appendix by C. J. Bushnell and G. Henniart). Ann of Math, 2002, 155(2): 837–893
[14]
Kim H H, Shahidi F. Cuspidality of symmetric powers with applications. Duke Math J, 2002, 112: 177–197
CrossRef Google scholar
[15]
Landau, E. Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. New York: Chelsea Publishing Company, 1949
[16]
Li X Q. Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann of Math, 2011, 173(1): 301–336
CrossRef Google scholar
[17]
Lü G S. Mean values connected with the Dedekind zeta function of a non-normal cubic field. CEJOR Cent Eur J Oper Res, 2013, 11(2): 274–282
CrossRef Google scholar
[18]
Lü G S, Wang Y H. Note on the number of integral ideals in Galois extensions. Sci China Math, 2010, 53(9): 2417–2424
CrossRef Google scholar
[19]
Rudnick Z, Sarnak P. Zeros of principal L-functions and random matrix theory. Duke Math J, 1996, 81: 269–322
CrossRef Google scholar
[20]
Shahidi F. On certain L-functions. Amer J Math, 1981, 103(2): 297–355
CrossRef Google scholar
[21]
Shahidi F. Third symmetric power L-functions for GL(2).Compos Math, 1989, 70(3): 245–273
[22]
Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Stud Adv Math, 46. Cambridge: Cambridge Univ Press, 1995
[23]
Yang Z S. Ideal counting function in cubic fields. Front Math China, 2017, 12(4): 981–992
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/