RESEARCH ARTICLE

Critical survival barrier for branching random walk

  • Jingning LIU 1 ,
  • Mei ZHANG , 2
Expand
  • 1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China
  • 2. School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China

Received date: 27 Aug 2018

Accepted date: 11 Dec 2019

Published date: 15 Dec 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an α-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.

Cite this article

Jingning LIU , Mei ZHANG . Critical survival barrier for branching random walk[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1259 -1280 . DOI: 10.1007/s11464-019-0806-4

1
Aïdékon E, Jaffuel B. Survival of branching random walks with absorption. Stochastic Process Appl, 2011, 121: 1901–1937

DOI

2
Berestycki J, Berestycki N, Schweinsberg J. Survival of near-critical branching Brownian motion. arXiv: 1009.0406

3
Biggins J D. Branching out. In: Bingham N H, Goldie C M, eds. Probability and Mathematical Genetics. London Math Soc Lecture Note Ser, Vol 378. Cambridge: Cambridge Univ Press, 2010, 113–134

DOI

4
Biggins J D, Kyprianou A E. Seneta-Heyde norming in the branching random walk. Ann Probab, 1997, 25: 337–360

DOI

5
Biggins J D, Kyprianou A E. Fixed points of the smoothing transform: The boundary case. Electron J Probab, 2005, 10: 609–631

DOI

6
Biggins J D, Lubachevsky B D, Shwartz A, Weiss, A. A branching random walk with barrier. Ann Appl Probab, 1991, 1: 573–581

DOI

7
Derrida B, Simon D. The survival probability of a branching random walk in presence of an absorbing wall. Europhys Lett, 2007, 78: 346–350

DOI

8
Derrida B, Simon D. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J Stat Phys, 2008, 131: 203–233

DOI

9
Gantert N, Hu Y, Shi Z. Asymptotics for the survival probability in a killed branching random walk. Ann Inst Henri Poincaré Probab Stat, 2011, 47: 111–129

DOI

10
Harris J W, Harris S C. Survival probabilities for branching Brownian motion with absorption. Electron Commun Probab, 2007, 12: 81–92

DOI

11
He H, Liu J, Zhang M. On Seneta-Heyde scaling for a stable branching random walk. Adv Appl Probab, 2018, 50: 565–599

DOI

12
Jaffuel B. The critical barrier for the survival of the branching random walk with absorption. Ann Inst Henri Poincaré Probab Stat, 2012, 48: 989–1009

DOI

13
Kesten H. Branching Brownian motion with absorption. Stochastic Process Appl, 1978, 7: 9–47

DOI

14
Lubachevsky B, Shwartz A, Weiss A. Rollback sometimes works ... if filtered. In: Proceedings of the 21st Conference on Winter Simulation. 1989, 630–639

DOI

15
Lubachevsky B, Shwartz A, Weiss A. An analysis of rollback-based simulation. EE PUB 755, Technion, Israel, 1990

16
Mallein B. N-Branching random walk with α-stable spine. arXiv: 1503.03762v1

17
Mogul’skii A A. Small deviations in the space of trajectories. Teor Verojatnost i Primenen, 1974, 19: 755–765

18
Prohorov Y V. Convergence of random processes and limit theorems in probability theory. Teor Verojatnost i Primenen, 1956, 1: 177–238

DOI

Outlines

/