Critical survival barrier for branching random walk

Jingning LIU , Mei ZHANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1259 -1280.

PDF (339KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1259 -1280. DOI: 10.1007/s11464-019-0806-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Critical survival barrier for branching random walk

Author information +
History +
PDF (339KB)

Abstract

We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an α-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.

Keywords

Branching random walk / α-stable spine / absorption / critical barrier

Cite this article

Download citation ▾
Jingning LIU, Mei ZHANG. Critical survival barrier for branching random walk. Front. Math. China, 2019, 14(6): 1259-1280 DOI:10.1007/s11464-019-0806-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aïdékon E, Jaffuel B. Survival of branching random walks with absorption. Stochastic Process Appl, 2011, 121: 1901–1937

[2]

Berestycki J, Berestycki N, Schweinsberg J. Survival of near-critical branching Brownian motion. arXiv: 1009.0406

[3]

Biggins J D. Branching out. In: Bingham N H, Goldie C M, eds. Probability and Mathematical Genetics. London Math Soc Lecture Note Ser, Vol 378. Cambridge: Cambridge Univ Press, 2010, 113–134

[4]

Biggins J D, Kyprianou A E. Seneta-Heyde norming in the branching random walk. Ann Probab, 1997, 25: 337–360

[5]

Biggins J D, Kyprianou A E. Fixed points of the smoothing transform: The boundary case. Electron J Probab, 2005, 10: 609–631

[6]

Biggins J D, Lubachevsky B D, Shwartz A, Weiss, A. A branching random walk with barrier. Ann Appl Probab, 1991, 1: 573–581

[7]

Derrida B, Simon D. The survival probability of a branching random walk in presence of an absorbing wall. Europhys Lett, 2007, 78: 346–350

[8]

Derrida B, Simon D. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J Stat Phys, 2008, 131: 203–233

[9]

Gantert N, Hu Y, Shi Z. Asymptotics for the survival probability in a killed branching random walk. Ann Inst Henri Poincaré Probab Stat, 2011, 47: 111–129

[10]

Harris J W, Harris S C. Survival probabilities for branching Brownian motion with absorption. Electron Commun Probab, 2007, 12: 81–92

[11]

He H, Liu J, Zhang M. On Seneta-Heyde scaling for a stable branching random walk. Adv Appl Probab, 2018, 50: 565–599

[12]

Jaffuel B. The critical barrier for the survival of the branching random walk with absorption. Ann Inst Henri Poincaré Probab Stat, 2012, 48: 989–1009

[13]

Kesten H. Branching Brownian motion with absorption. Stochastic Process Appl, 1978, 7: 9–47

[14]

Lubachevsky B, Shwartz A, Weiss A. Rollback sometimes works ... if filtered. In: Proceedings of the 21st Conference on Winter Simulation. 1989, 630–639

[15]

Lubachevsky B, Shwartz A, Weiss A. An analysis of rollback-based simulation. EE PUB 755, Technion, Israel, 1990

[16]

Mallein B. N-Branching random walk with α-stable spine. arXiv: 1503.03762v1

[17]

Mogul’skii A A. Small deviations in the space of trajectories. Teor Verojatnost i Primenen, 1974, 19: 755–765

[18]

Prohorov Y V. Convergence of random processes and limit theorems in probability theory. Teor Verojatnost i Primenen, 1956, 1: 177–238

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (339KB)

656

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/