RESEARCH ARTICLE

Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)

  • Xin LI ,
  • Jiming GUO ,
  • Zhiwen WANG
Expand
  • Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Received date: 07 Aug 2019

Accepted date: 28 Nov 2019

Published date: 15 Dec 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The least eigenvalue of a connected graph is the least eigenvalue of its adjacency matrix. We characterize the connected graphs of order n and size n + k (5≤k≤8 and n>k + 5) with the minimal least eigenvalue.

Cite this article

Xin LI , Jiming GUO , Zhiwen WANG . Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1213 -1230 . DOI: 10.1007/s11464-019-0805-5

1
Bell F K, Cvetković D, Rowlinson P, Simić S K. Graphs for which the least eigenvalue is minimal, I. Linear Algebra Appl, 2008, 429: 234–241

DOI

2
Bell F K, Cvetković D, Rowlinson P, Simić S K. Graphs for which the least eigenvalue is minimal, II. Linear Algebra Appl, 2008, 429: 2168–2179, see also Erratum: from the editor-in-Chief, Linear Algebra Appl, 2010, 432: I–VI

DOI

3
Bhattacharya A, Friedland S, Peled U N. On the first eigenvalue of bipartite graphs. Electron J Combin, 2008, 15(1): 144

4
Cvetković D, Doob M, Sachs H. Spectra of Graphs. Berlin: Academic Press, 1980

5
Cvetković D, Rowlinson P, Simić S K.Spectral Generalizations of Line Graphs. On graphs with least eigenvalue 2: Cambridge: Cambridge Univ Press, 2004

DOI

6
Cvetković D, Rowlinson P, Simić S. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge Univ Press, 2010

DOI

7
Doob M. A surprising property of the least eigenvalue of a graph. Linear Algebra Appl, 1982, 46: 1–7

DOI

8
Fan Y, Wang Y, Gao Y. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread. Linear Algebra Appl, 2008, 429: 577–588

DOI

9
Petrović M, Aleksić T, Simić V. Further results on the least eigenvalue of connected graphs. Linear Algebra Appl, 2011, 435: 2303–2313

DOI

10
Petrović M, Borovićanin B, Aleksić T. Bicyclic graphs for which the least eigenvalue is minimal. Linear Algebra Appl, 2009, 430: 1328–1335

DOI

11
Voász L, Pelikán J. On the eigenvalues of trees. Period Math Hungar, 1973, 3: 175–182

DOI

12
Wang Y, Fan Y. The least eigenvalue of a graph with cut vertices. Linear Algebra Appl, 2010, 433: 19–27

DOI

13
Xu G. Upper bound on the least eigenvalue of unicyclic graphs. J Zhejiang Forestry College, 1998, 15(3): 304–309 (in Chinese)

14
Zhai M, Liu R, Shu J. Minimizing the least eigenvalue of unicyclic graphs with fixed diameter. Discrete Math, 2010, 310: 947–955

DOI

Outlines

/