Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)

Xin LI, Jiming GUO, Zhiwen WANG

PDF(617 KB)
PDF(617 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1213-1230. DOI: 10.1007/s11464-019-0805-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)

Author information +
History +

Abstract

The least eigenvalue of a connected graph is the least eigenvalue of its adjacency matrix. We characterize the connected graphs of order n and size n + k (5≤k≤8 and n>k + 5) with the minimal least eigenvalue.

Keywords

Least eigenvalue / adjacency matrix / graph

Cite this article

Download citation ▾
Xin LI, Jiming GUO, Zhiwen WANG. Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8). Front. Math. China, 2019, 14(6): 1213‒1230 https://doi.org/10.1007/s11464-019-0805-5

References

[1]
Bell F K, Cvetković D, Rowlinson P, Simić S K. Graphs for which the least eigenvalue is minimal, I. Linear Algebra Appl, 2008, 429: 234–241
CrossRef Google scholar
[2]
Bell F K, Cvetković D, Rowlinson P, Simić S K. Graphs for which the least eigenvalue is minimal, II. Linear Algebra Appl, 2008, 429: 2168–2179, see also Erratum: from the editor-in-Chief, Linear Algebra Appl, 2010, 432: I–VI
CrossRef Google scholar
[3]
Bhattacharya A, Friedland S, Peled U N. On the first eigenvalue of bipartite graphs. Electron J Combin, 2008, 15(1): 144
[4]
Cvetković D, Doob M, Sachs H. Spectra of Graphs. Berlin: Academic Press, 1980
[5]
Cvetković D, Rowlinson P, Simić S K.Spectral Generalizations of Line Graphs. On graphs with least eigenvalue 2: Cambridge: Cambridge Univ Press, 2004
CrossRef Google scholar
[6]
Cvetković D, Rowlinson P, Simić S. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge Univ Press, 2010
CrossRef Google scholar
[7]
Doob M. A surprising property of the least eigenvalue of a graph. Linear Algebra Appl, 1982, 46: 1–7
CrossRef Google scholar
[8]
Fan Y, Wang Y, Gao Y. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread. Linear Algebra Appl, 2008, 429: 577–588
CrossRef Google scholar
[9]
Petrović M, Aleksić T, Simić V. Further results on the least eigenvalue of connected graphs. Linear Algebra Appl, 2011, 435: 2303–2313
CrossRef Google scholar
[10]
Petrović M, Borovićanin B, Aleksić T. Bicyclic graphs for which the least eigenvalue is minimal. Linear Algebra Appl, 2009, 430: 1328–1335
CrossRef Google scholar
[11]
Voász L, Pelikán J. On the eigenvalues of trees. Period Math Hungar, 1973, 3: 175–182
CrossRef Google scholar
[12]
Wang Y, Fan Y. The least eigenvalue of a graph with cut vertices. Linear Algebra Appl, 2010, 433: 19–27
CrossRef Google scholar
[13]
Xu G. Upper bound on the least eigenvalue of unicyclic graphs. J Zhejiang Forestry College, 1998, 15(3): 304–309 (in Chinese)
[14]
Zhai M, Liu R, Shu J. Minimizing the least eigenvalue of unicyclic graphs with fixed diameter. Discrete Math, 2010, 310: 947–955
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(617 KB)

Accesses

Citations

Detail

Sections
Recommended

/