RESEARCH ARTICLE

Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations

  • Boling GUO 1 ,
  • Fengxia LIU , 2
Expand
  • 1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • 2. The Graduate School of China Academy of Engineering Physics, Beijing 100088, China

Received date: 11 Jan 2019

Accepted date: 19 Oct 2019

Published date: 15 Dec 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Considering the Navier-Stokes-Landau-Lifshitz-Maxwell equations, in dimensions two and three, we use Galerkin method to prove the existence of weak solution. Then combine the a priori estimates and induction technique, we obtain the existence of smooth solution.

Cite this article

Boling GUO , Fengxia LIU . Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1133 -1161 . DOI: 10.1007/s11464-019-0800-x

1
Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the navier-stokes equations. Comm Pure Appl Math, 2010, 35(6): 771–831

DOI

2
Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 22–34

DOI

3
Ericksen J. Hydrostatic theory of liquid crystals. Arch Ration Mech Anal, 1962, 9(1): 371–378

DOI

4
Ericksen J. Equilibrium theory of liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 2. New York: Academic Press, 1976, 233–298

DOI

5
Ericksen J. Continuum theory of nematic liquid crystals. Res Mechanica, 1987, 22: 381–392

6
Ericksen J L, Kinderlehrer D. Theory and Applications of Liquid Crystals. The IMA volumes in Mathematics and Its Applications, Vol 5. New York: Springer-Verlag, 1986

DOI

7
Fan J, Gao H, Guo B. Regularity criteria for the Navier-Stokes-Landau-Lifshitz system. J Math Anal Appl, 2009, 363(1): 29–37

DOI

8
Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford Univ Press, 2004

DOI

9
Greenberg J M, Maccamy R C, Coffman C V. On the long-time behavior of ferroelectric systems. Phys D, 1999, 134(3): 362–383

DOI

10
Kim H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37: 1417–1434

DOI

11
Ladyzhenskaya O A, Ural'Tseva N N, Solonnikov N A. Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968

12
Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28(4): 265–283

DOI

13
Leslie F M. Theory of flow phenomena in liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 4. New York: Academic Press, 1979, 1–81

DOI

14
Lin F. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm Pure Appl Math, 1998, 51(3): 241–257

DOI

15
Lin F, Lin J, Wang C. Liquid crystal ows in two dimensions. Arch Ration Mech Anal, 2010, 197(1): 297–336

DOI

16
Lin F, Liu C. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1995, 2(1): 1–22

DOI

17
Lin F, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 2010, 48(5): 501–537

DOI

18
Schein B M. Techniques of semigroup theory. Semigroup Forum, 1994, 49(1): 397–402

DOI

19
Simon J. Nonhomogeneous viscous incompressible uids: existence of viscosity, density and pressure. SIAM J Math Anal, 1990, 20: 1093–1117

DOI

20
Temam R. Navier-Stokes Equations. Studies in Mathematics and Its Applications, Vol 2. Amsterdam: North-Holland, 1977

Outlines

/