Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations

Boling GUO , Fengxia LIU

Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1133 -1161.

PDF (320KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1133 -1161. DOI: 10.1007/s11464-019-0800-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations

Author information +
History +
PDF (320KB)

Abstract

Considering the Navier-Stokes-Landau-Lifshitz-Maxwell equations, in dimensions two and three, we use Galerkin method to prove the existence of weak solution. Then combine the a priori estimates and induction technique, we obtain the existence of smooth solution.

Keywords

Weak solution / smooth solution / Navier-Stokes-Landau-Lifshitz-Maxwell equations

Cite this article

Download citation ▾
Boling GUO, Fengxia LIU. Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations. Front. Math. China, 2019, 14(6): 1133-1161 DOI:10.1007/s11464-019-0800-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the navier-stokes equations. Comm Pure Appl Math, 2010, 35(6): 771–831

[2]

Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 22–34

[3]

Ericksen J. Hydrostatic theory of liquid crystals. Arch Ration Mech Anal, 1962, 9(1): 371–378

[4]

Ericksen J. Equilibrium theory of liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 2. New York: Academic Press, 1976, 233–298

[5]

Ericksen J. Continuum theory of nematic liquid crystals. Res Mechanica, 1987, 22: 381–392

[6]

Ericksen J L, Kinderlehrer D. Theory and Applications of Liquid Crystals. The IMA volumes in Mathematics and Its Applications, Vol 5. New York: Springer-Verlag, 1986

[7]

Fan J, Gao H, Guo B. Regularity criteria for the Navier-Stokes-Landau-Lifshitz system. J Math Anal Appl, 2009, 363(1): 29–37

[8]

Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford Univ Press, 2004

[9]

Greenberg J M, Maccamy R C, Coffman C V. On the long-time behavior of ferroelectric systems. Phys D, 1999, 134(3): 362–383

[10]

Kim H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37: 1417–1434

[11]

Ladyzhenskaya O A, Ural'Tseva N N, Solonnikov N A. Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968

[12]

Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28(4): 265–283

[13]

Leslie F M. Theory of flow phenomena in liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 4. New York: Academic Press, 1979, 1–81

[14]

Lin F. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm Pure Appl Math, 1998, 51(3): 241–257

[15]

Lin F, Lin J, Wang C. Liquid crystal ows in two dimensions. Arch Ration Mech Anal, 2010, 197(1): 297–336

[16]

Lin F, Liu C. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1995, 2(1): 1–22

[17]

Lin F, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 2010, 48(5): 501–537

[18]

Schein B M. Techniques of semigroup theory. Semigroup Forum, 1994, 49(1): 397–402

[19]

Simon J. Nonhomogeneous viscous incompressible uids: existence of viscosity, density and pressure. SIAM J Math Anal, 1990, 20: 1093–1117

[20]

Temam R. Navier-Stokes Equations. Studies in Mathematics and Its Applications, Vol 2. Amsterdam: North-Holland, 1977

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (320KB)

674

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/