Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations

Boling GUO, Fengxia LIU

PDF(320 KB)
PDF(320 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1133-1161. DOI: 10.1007/s11464-019-0800-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations

Author information +
History +

Abstract

Considering the Navier-Stokes-Landau-Lifshitz-Maxwell equations, in dimensions two and three, we use Galerkin method to prove the existence of weak solution. Then combine the a priori estimates and induction technique, we obtain the existence of smooth solution.

Keywords

Weak solution / smooth solution / Navier-Stokes-Landau-Lifshitz-Maxwell equations

Cite this article

Download citation ▾
Boling GUO, Fengxia LIU. Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations. Front. Math. China, 2019, 14(6): 1133‒1161 https://doi.org/10.1007/s11464-019-0800-x

References

[1]
Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the navier-stokes equations. Comm Pure Appl Math, 2010, 35(6): 771–831
CrossRef Google scholar
[2]
Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 22–34
CrossRef Google scholar
[3]
Ericksen J. Hydrostatic theory of liquid crystals. Arch Ration Mech Anal, 1962, 9(1): 371–378
CrossRef Google scholar
[4]
Ericksen J. Equilibrium theory of liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 2. New York: Academic Press, 1976, 233–298
CrossRef Google scholar
[5]
Ericksen J. Continuum theory of nematic liquid crystals. Res Mechanica, 1987, 22: 381–392
[6]
Ericksen J L, Kinderlehrer D. Theory and Applications of Liquid Crystals. The IMA volumes in Mathematics and Its Applications, Vol 5. New York: Springer-Verlag, 1986
CrossRef Google scholar
[7]
Fan J, Gao H, Guo B. Regularity criteria for the Navier-Stokes-Landau-Lifshitz system. J Math Anal Appl, 2009, 363(1): 29–37
CrossRef Google scholar
[8]
Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford Univ Press, 2004
CrossRef Google scholar
[9]
Greenberg J M, Maccamy R C, Coffman C V. On the long-time behavior of ferroelectric systems. Phys D, 1999, 134(3): 362–383
CrossRef Google scholar
[10]
Kim H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37: 1417–1434
CrossRef Google scholar
[11]
Ladyzhenskaya O A, Ural'Tseva N N, Solonnikov N A. Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968
[12]
Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28(4): 265–283
CrossRef Google scholar
[13]
Leslie F M. Theory of flow phenomena in liquid crystals. In: Brown G, ed. Advances in Liquid Crystals, Vol 4. New York: Academic Press, 1979, 1–81
CrossRef Google scholar
[14]
Lin F. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm Pure Appl Math, 1998, 51(3): 241–257
CrossRef Google scholar
[15]
Lin F, Lin J, Wang C. Liquid crystal ows in two dimensions. Arch Ration Mech Anal, 2010, 197(1): 297–336
CrossRef Google scholar
[16]
Lin F, Liu C. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1995, 2(1): 1–22
CrossRef Google scholar
[17]
Lin F, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 2010, 48(5): 501–537
CrossRef Google scholar
[18]
Schein B M. Techniques of semigroup theory. Semigroup Forum, 1994, 49(1): 397–402
CrossRef Google scholar
[19]
Simon J. Nonhomogeneous viscous incompressible uids: existence of viscosity, density and pressure. SIAM J Math Anal, 1990, 20: 1093–1117
CrossRef Google scholar
[20]
Temam R. Navier-Stokes Equations. Studies in Mathematics and Its Applications, Vol 2. Amsterdam: North-Holland, 1977

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(320 KB)

Accesses

Citations

Detail

Sections
Recommended

/