Frontiers of Mathematics in China >
Improved global algorithms for maximal eigenpair
Received date: 08 Sep 2019
Accepted date: 17 Oct 2019
Published date: 15 Dec 2019
Copyright
This paper is a continuation of our previous paper [Front. Math. China, 2017, 12(5): 1023{1043] where global algorithms for computing the maximal eigenpair were introduced in a rather general setup. The efficiency of the global algorithms is improved in this paper in terms of a good use of power iteration and two quasi-symmetric techniques. Finally, the new algorithms are applied to Hua's economic optimization model.
Mu-Fa CHEN , Yue-Shuang LI . Improved global algorithms for maximal eigenpair[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1077 -1116 . DOI: 10.1007/s11464-019-0799-z
1 |
Butler B K, Siegel P H. Sharp bounds on the spectral radius of nonnegative matrices and digraphs. Linear Algebra Appl, 2013, 439(5): 1468–1478
|
2 |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
|
3 |
Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
|
4 |
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
|
5 |
Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297
|
6 |
Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329
|
7 |
Chen M F. The optimal search problem|begins with the loss of Malaysia Airlines. Math Media, 2017, 41(3): 13–25 (in Chinese)
|
8 |
Chen M F. Hermitizable, isospectral complex matrices or differential operators. FrontMath China, 2018, 13(6): 1267–1311
|
9 |
Chen M F, Li Y S. Development of powerful algorithm for maximal eigenpair. Front Math China, 2019, 14(3): 493–519
|
10 |
Chen M F, Mao Y H. Introduction to Stochastic Processes. Beijing: Higher Education Press, 2007 (in Chinese); Singapore: World Sci, 2019 (English Ed)
|
11 |
Dynkin E B. Markov Processes, Vol 1. New York: Springer, 1965
|
12 |
Hall C A, Porsching T A. Bounds for the maximal eigenvalue of a nonnegative irreducible matrix. Duke Math J, 1969, 36(1): 159–164
|
13 |
Hou Z T, Guo Q F. Time-Homogeneous Markov Processes with Countable State Space. Beijing: Science Press, 1978 (in Chinese); Beijing/Berlin: Science Press/Springer, 1988 (English Ed)
|
14 |
Hua L K. Mathematical theory of large-scale optimization of planned economy (I). Chin Sci Bull, 1984, 12: 705–709 (in Chinese)
|
15 |
Hua L K. Mathematical theory of large-scale optimization of planned economy (X). Chin Sci Bull, 1985, 9: 641–645 (in Chinese)
|
16 |
Hua L K, Hua S. Study on real square matrix with positive left- and right-eigenvectors simultaneous. Mathematics Bull, 1985, 8: 30–33 (in Chinese)
|
17 |
7. Hua L K. Mathematical theory on economic optimal balance. In: Yang D Z, ed. Collected Works by L K Hua (Applied Math II). Beijing: Science Press, 2010, 39–53(in Chinese)
|
18 |
Wang Z K. General Theory of Stochastic Processes, Vol I. Beijing: Beijing Normal Univ Press, 1996 (in Chinese)
|
19 |
You L H, Shu Y J, Yuan P Z. Sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix and its applications. Linear Multilinear Algebra, 2017, 65(1): 113{128
|
20 |
Zhang Y H. Criteria on ergodicity and strong ergodicity of single death processes. Front Math China, 2018, 13(5): 1215–1243
|
/
〈 | 〉 |