Improved global algorithms for maximal eigenpair

Mu-Fa CHEN , Yue-Shuang LI

Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1077 -1116.

PDF (1061KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1077 -1116. DOI: 10.1007/s11464-019-0799-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Improved global algorithms for maximal eigenpair

Author information +
History +
PDF (1061KB)

Abstract

This paper is a continuation of our previous paper [Front. Math. China, 2017, 12(5): 1023{1043] where global algorithms for computing the maximal eigenpair were introduced in a rather general setup. The efficiency of the global algorithms is improved in this paper in terms of a good use of power iteration and two quasi-symmetric techniques. Finally, the new algorithms are applied to Hua's economic optimization model.

Keywords

Maximal eigenpair / global algorithm / power iteration / shifted inverse iteration / quasi-symmetrization

Cite this article

Download citation ▾
Mu-Fa CHEN, Yue-Shuang LI. Improved global algorithms for maximal eigenpair. Front. Math. China, 2019, 14(6): 1077-1116 DOI:10.1007/s11464-019-0799-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Butler B K, Siegel P H. Sharp bounds on the spectral radius of nonnegative matrices and digraphs. Linear Algebra Appl, 2013, 439(5): 1468–1478

[2]

Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005

[3]

Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418

[4]

Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043

[5]

Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297

[6]

Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329

[7]

Chen M F. The optimal search problem|begins with the loss of Malaysia Airlines. Math Media, 2017, 41(3): 13–25 (in Chinese)

[8]

Chen M F. Hermitizable, isospectral complex matrices or differential operators. FrontMath China, 2018, 13(6): 1267–1311

[9]

Chen M F, Li Y S. Development of powerful algorithm for maximal eigenpair. Front Math China, 2019, 14(3): 493–519

[10]

Chen M F, Mao Y H. Introduction to Stochastic Processes. Beijing: Higher Education Press, 2007 (in Chinese); Singapore: World Sci, 2019 (English Ed)

[11]

Dynkin E B. Markov Processes, Vol 1. New York: Springer, 1965

[12]

Hall C A, Porsching T A. Bounds for the maximal eigenvalue of a nonnegative irreducible matrix. Duke Math J, 1969, 36(1): 159–164

[13]

Hou Z T, Guo Q F. Time-Homogeneous Markov Processes with Countable State Space. Beijing: Science Press, 1978 (in Chinese); Beijing/Berlin: Science Press/Springer, 1988 (English Ed)

[14]

Hua L K. Mathematical theory of large-scale optimization of planned economy (I). Chin Sci Bull, 1984, 12: 705–709 (in Chinese)

[15]

Hua L K. Mathematical theory of large-scale optimization of planned economy (X). Chin Sci Bull, 1985, 9: 641–645 (in Chinese)

[16]

Hua L K, Hua S. Study on real square matrix with positive left- and right-eigenvectors simultaneous. Mathematics Bull, 1985, 8: 30–33 (in Chinese)

[17]

7. Hua L K. Mathematical theory on economic optimal balance. In: Yang D Z, ed. Collected Works by L K Hua (Applied Math II). Beijing: Science Press, 2010, 39–53(in Chinese)

[18]

Wang Z K. General Theory of Stochastic Processes, Vol I. Beijing: Beijing Normal Univ Press, 1996 (in Chinese)

[19]

You L H, Shu Y J, Yuan P Z. Sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix and its applications. Linear Multilinear Algebra, 2017, 65(1): 113{128

[20]

Zhang Y H. Criteria on ergodicity and strong ergodicity of single death processes. Front Math China, 2018, 13(5): 1215–1243

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1061KB)

879

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/