Frontiers of Mathematics in China >
Radon transforms on Siegel-type nilpotent Lie groups
Received date: 09 Jun 2017
Accepted date: 26 Aug 2019
Published date: 15 Oct 2019
Copyright
Let := be the Siegel-type nilpotent group, which can be identified as the Shilov boundary of Siegel domain of type II, where denotes the set of all Hermitian matrices. In this article, we use singular convolution operators to define Radon transform on and obtain the inversion formulas of Radon transforms. Moveover, we show that Radon transform on is a unitary operator from Sobolev space Wn;2 into L2():
Xingya FAN , Jianxun HE , Jinsen XIAO , Wenjun YUAN . Radon transforms on Siegel-type nilpotent Lie groups[J]. Frontiers of Mathematics in China, 2019 , 14(5) : 855 -866 . DOI: 10.1007/s11464-019-0787-3
1 |
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math, 1961, 14: 187–214
|
2 |
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm Pure Appl Math, 1967, 20: 1–101
|
3 |
Carlton E. A Plancherel formula for idyllic nilpotent Lie groups. Trans Amer Math Soc, 1976, 224: 1–42
|
4 |
Damek E, Hulanicki A, Müller D, Peloso M M. Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom Funct Anal, 2000, 10: 1090–1117
|
5 |
Dooley A, Zhang G K. Algebras of invariant functions on the Shilov boundaries of Siegel domains. Proc Amer Math Soc, 1998, 126: 3693–3699
|
6 |
Faraut J, Korányi A. Analysis on Symmetric Cones. Oxford: Oxford Univ Press, 1994
|
7 |
Felix R. Radon-transformation auf nilpotenten Lie-gruppen. Invent Math, 1993, 112: 413–443
|
8 |
Geller D, Stein E M. Estimates convolution operators on the Heisenberg group. Bull Amer Math Soc (N S), 1984, 267: 99–103
|
9 |
He J X, Liu H P. Inversion of the Radon transform associated with the classical domain of type one. Internat J Math, 2005, 16: 875–887
|
10 |
He J X, Liu H P. Admissible wavelets and inverse Radon transform associated with the affine homogeneous Siegel domains of type II. Comm Anal Geom, 2007, 15: 1–28
|
11 |
He J X, Liu H P. Wavelet transform and Radon transform on the quaternion Heisenberg group. Acta Math Sin (Engl Ser), 2014, 30: 619–636
|
12 |
Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1978
|
13 |
Helgason S. Integral Geometry and Radon Transforms. New York: Springer, 2011
|
14 |
Howe R. On the role of the Heisenberg group in harmonic analysis. Bull Amer Math Soc (N S), 1980, 3: 821–843
|
15 |
Hua L K. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963
|
16 |
Korányi A, Wolf A. Realization of Hermitian symmetric spaces as generalized halfplanes. Ann of Math, 1965, 81(2): 265–288
|
17 |
Moore C, Wolf A. Square integrable representations of nilpotent groups. Trans Amer Math Soc, 1973, 185: 445–462
|
18 |
Ogden R, Vági S. Harmonic analysis of a nilpotent group and function theory of Siegel domains of type II. Adv Math, 1979, 33: 31–92
|
19 |
Ørsted B, Zhang G K. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ Math J, 1994, 43: 551–583
|
20 |
Peetre J. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 1972, 27: 301–323
|
21 |
Peng L Z, Zhang G K. Radon transform on H-type and Siegel-type nilpotent groups. Internat J Math, 2007, 18: 1061–1070
|
22 |
Ricci F, Stein E M. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J Funct Anal, 1989, 86: 360–389
|
23 |
Rossi H, Vergne M. Group representations on Hilbert spaces defined in terms of ∂‾b-cohomology on the Shilov boundary of a Siegel domain. Pacific J Math, 1976, 65: 193–207
|
24 |
Rubin B. The Radon transform on the Heisenberg group and the transversal Radon transform. J Funct Anal, 2012, 262: 234–272
|
25 |
Satake I. Algebraic Structures of Symmetric Domains. Princeton: Princeton Univ Press, 1980
|
26 |
Shabat B. Introduction to Complex Analysis, Part II: Functions of Several Variables. Providence: Amer Math Soc, 1992
|
27 |
Strichartz R. Lpharmonic analysis and Radon transforms on the Heisenberg group. J Funct Anal, 1991, 96: 350–406
|
28 |
Wolf A. Harmonic Analysis on Commutative Spaces. Providence: Amer Math Soc, 2007
|
29 |
Wolf A. Infinite dimensional multiplicity free spaces III: matrix coefficients and regular functions. Math Ann, 2011, 349: 263{299
|
30 |
Zhang G K. Radon transform on symmetric matrix domains. Trans Amer Math Soc, 2009, 361: 1351–1369
|
/
〈 | 〉 |