RESEARCH ARTICLE

Radon transforms on Siegel-type nilpotent Lie groups

  • Xingya FAN 1,2 ,
  • Jianxun HE , 2 ,
  • Jinsen XIAO 3 ,
  • Wenjun YUAN 2
Expand
  • 1. School of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
  • 2. School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
  • 3. School of Sciences, Guangdong University of Petrochemical Technology, Maoming 525000, China

Received date: 09 Jun 2017

Accepted date: 26 Aug 2019

Published date: 15 Oct 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let N:=Hn×n be the Siegel-type nilpotent group, which can be identified as the Shilov boundary of Siegel domain of type II, where Hn denotes the set of all n×n Hermitian matrices. In this article, we use singular convolution operators to define Radon transform on N and obtain the inversion formulas of Radon transforms. Moveover, we show that Radon transform on N is a unitary operator from Sobolev space Wn;2 into L2(N):

Cite this article

Xingya FAN , Jianxun HE , Jinsen XIAO , Wenjun YUAN . Radon transforms on Siegel-type nilpotent Lie groups[J]. Frontiers of Mathematics in China, 2019 , 14(5) : 855 -866 . DOI: 10.1007/s11464-019-0787-3

1
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math, 1961, 14: 187–214

DOI

2
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm Pure Appl Math, 1967, 20: 1–101

DOI

3
Carlton E. A Plancherel formula for idyllic nilpotent Lie groups. Trans Amer Math Soc, 1976, 224: 1–42

DOI

4
Damek E, Hulanicki A, Müller D, Peloso M M. Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom Funct Anal, 2000, 10: 1090–1117

DOI

5
Dooley A, Zhang G K. Algebras of invariant functions on the Shilov boundaries of Siegel domains. Proc Amer Math Soc, 1998, 126: 3693–3699

DOI

6
Faraut J, Korányi A. Analysis on Symmetric Cones. Oxford: Oxford Univ Press, 1994

7
Felix R. Radon-transformation auf nilpotenten Lie-gruppen. Invent Math, 1993, 112: 413–443

DOI

8
Geller D, Stein E M. Estimates convolution operators on the Heisenberg group. Bull Amer Math Soc (N S), 1984, 267: 99–103

DOI

9
He J X, Liu H P. Inversion of the Radon transform associated with the classical domain of type one. Internat J Math, 2005, 16: 875–887

DOI

10
He J X, Liu H P. Admissible wavelets and inverse Radon transform associated with the affine homogeneous Siegel domains of type II. Comm Anal Geom, 2007, 15: 1–28

DOI

11
He J X, Liu H P. Wavelet transform and Radon transform on the quaternion Heisenberg group. Acta Math Sin (Engl Ser), 2014, 30: 619–636

DOI

12
Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1978

13
Helgason S. Integral Geometry and Radon Transforms. New York: Springer, 2011

DOI

14
Howe R. On the role of the Heisenberg group in harmonic analysis. Bull Amer Math Soc (N S), 1980, 3: 821–843

DOI

15
Hua L K. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963

DOI

16
Korányi A, Wolf A. Realization of Hermitian symmetric spaces as generalized halfplanes. Ann of Math, 1965, 81(2): 265–288

DOI

17
Moore C, Wolf A. Square integrable representations of nilpotent groups. Trans Amer Math Soc, 1973, 185: 445–462

DOI

18
Ogden R, Vági S. Harmonic analysis of a nilpotent group and function theory of Siegel domains of type II. Adv Math, 1979, 33: 31–92

DOI

19
Ørsted B, Zhang G K. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ Math J, 1994, 43: 551–583

DOI

20
Peetre J. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 1972, 27: 301–323

21
Peng L Z, Zhang G K. Radon transform on H-type and Siegel-type nilpotent groups. Internat J Math, 2007, 18: 1061–1070

DOI

22
Ricci F, Stein E M. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J Funct Anal, 1989, 86: 360–389

DOI

23
Rossi H, Vergne M. Group representations on Hilbert spaces defined in terms of ∂‾b-cohomology on the Shilov boundary of a Siegel domain. Pacific J Math, 1976, 65: 193–207

DOI

24
Rubin B. The Radon transform on the Heisenberg group and the transversal Radon transform. J Funct Anal, 2012, 262: 234–272

DOI

25
Satake I. Algebraic Structures of Symmetric Domains. Princeton: Princeton Univ Press, 1980

DOI

26
Shabat B. Introduction to Complex Analysis, Part II: Functions of Several Variables. Providence: Amer Math Soc, 1992

DOI

27
Strichartz R. Lpharmonic analysis and Radon transforms on the Heisenberg group. J Funct Anal, 1991, 96: 350–406

DOI

28
Wolf A. Harmonic Analysis on Commutative Spaces. Providence: Amer Math Soc, 2007

DOI

29
Wolf A. Infinite dimensional multiplicity free spaces III: matrix coefficients and regular functions. Math Ann, 2011, 349: 263{299

DOI

30
Zhang G K. Radon transform on symmetric matrix domains. Trans Amer Math Soc, 2009, 361: 1351–1369

DOI

Outlines

/