Radon transforms on Siegel-type nilpotent Lie groups

Xingya FAN, Jianxun HE, Jinsen XIAO, Wenjun YUAN

PDF(280 KB)
PDF(280 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (5) : 855-866. DOI: 10.1007/s11464-019-0787-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Radon transforms on Siegel-type nilpotent Lie groups

Author information +
History +

Abstract

Let N:=Hn×n be the Siegel-type nilpotent group, which can be identified as the Shilov boundary of Siegel domain of type II, where Hn denotes the set of all n×n Hermitian matrices. In this article, we use singular convolution operators to define Radon transform on N and obtain the inversion formulas of Radon transforms. Moveover, we show that Radon transform on N is a unitary operator from Sobolev space Wn;2 into L2(N):

Keywords

Siegel domain / Siegel-type nilpotent group / Fourier transform / Radon transform

Cite this article

Download citation ▾
Xingya FAN, Jianxun HE, Jinsen XIAO, Wenjun YUAN. Radon transforms on Siegel-type nilpotent Lie groups. Front. Math. China, 2019, 14(5): 855‒866 https://doi.org/10.1007/s11464-019-0787-3

References

[1]
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math, 1961, 14: 187–214
CrossRef Google scholar
[2]
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm Pure Appl Math, 1967, 20: 1–101
CrossRef Google scholar
[3]
Carlton E. A Plancherel formula for idyllic nilpotent Lie groups. Trans Amer Math Soc, 1976, 224: 1–42
CrossRef Google scholar
[4]
Damek E, Hulanicki A, Müller D, Peloso M M. Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom Funct Anal, 2000, 10: 1090–1117
CrossRef Google scholar
[5]
Dooley A, Zhang G K. Algebras of invariant functions on the Shilov boundaries of Siegel domains. Proc Amer Math Soc, 1998, 126: 3693–3699
CrossRef Google scholar
[6]
Faraut J, Korányi A. Analysis on Symmetric Cones. Oxford: Oxford Univ Press, 1994
[7]
Felix R. Radon-transformation auf nilpotenten Lie-gruppen. Invent Math, 1993, 112: 413–443
CrossRef Google scholar
[8]
Geller D, Stein E M. Estimates convolution operators on the Heisenberg group. Bull Amer Math Soc (N S), 1984, 267: 99–103
CrossRef Google scholar
[9]
He J X, Liu H P. Inversion of the Radon transform associated with the classical domain of type one. Internat J Math, 2005, 16: 875–887
CrossRef Google scholar
[10]
He J X, Liu H P. Admissible wavelets and inverse Radon transform associated with the affine homogeneous Siegel domains of type II. Comm Anal Geom, 2007, 15: 1–28
CrossRef Google scholar
[11]
He J X, Liu H P. Wavelet transform and Radon transform on the quaternion Heisenberg group. Acta Math Sin (Engl Ser), 2014, 30: 619–636
CrossRef Google scholar
[12]
Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1978
[13]
Helgason S. Integral Geometry and Radon Transforms. New York: Springer, 2011
CrossRef Google scholar
[14]
Howe R. On the role of the Heisenberg group in harmonic analysis. Bull Amer Math Soc (N S), 1980, 3: 821–843
CrossRef Google scholar
[15]
Hua L K. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963
CrossRef Google scholar
[16]
Korányi A, Wolf A. Realization of Hermitian symmetric spaces as generalized halfplanes. Ann of Math, 1965, 81(2): 265–288
CrossRef Google scholar
[17]
Moore C, Wolf A. Square integrable representations of nilpotent groups. Trans Amer Math Soc, 1973, 185: 445–462
CrossRef Google scholar
[18]
Ogden R, Vági S. Harmonic analysis of a nilpotent group and function theory of Siegel domains of type II. Adv Math, 1979, 33: 31–92
CrossRef Google scholar
[19]
Ørsted B, Zhang G K. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ Math J, 1994, 43: 551–583
CrossRef Google scholar
[20]
Peetre J. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 1972, 27: 301–323
[21]
Peng L Z, Zhang G K. Radon transform on H-type and Siegel-type nilpotent groups. Internat J Math, 2007, 18: 1061–1070
CrossRef Google scholar
[22]
Ricci F, Stein E M. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J Funct Anal, 1989, 86: 360–389
CrossRef Google scholar
[23]
Rossi H, Vergne M. Group representations on Hilbert spaces defined in terms of ∂‾b-cohomology on the Shilov boundary of a Siegel domain. Pacific J Math, 1976, 65: 193–207
CrossRef Google scholar
[24]
Rubin B. The Radon transform on the Heisenberg group and the transversal Radon transform. J Funct Anal, 2012, 262: 234–272
CrossRef Google scholar
[25]
Satake I. Algebraic Structures of Symmetric Domains. Princeton: Princeton Univ Press, 1980
CrossRef Google scholar
[26]
Shabat B. Introduction to Complex Analysis, Part II: Functions of Several Variables. Providence: Amer Math Soc, 1992
CrossRef Google scholar
[27]
Strichartz R. Lpharmonic analysis and Radon transforms on the Heisenberg group. J Funct Anal, 1991, 96: 350–406
CrossRef Google scholar
[28]
Wolf A. Harmonic Analysis on Commutative Spaces. Providence: Amer Math Soc, 2007
CrossRef Google scholar
[29]
Wolf A. Infinite dimensional multiplicity free spaces III: matrix coefficients and regular functions. Math Ann, 2011, 349: 263{299
CrossRef Google scholar
[30]
Zhang G K. Radon transform on symmetric matrix domains. Trans Amer Math Soc, 2009, 361: 1351–1369
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(280 KB)

Accesses

Citations

Detail

Sections
Recommended

/