Radon transforms on Siegel-type nilpotent Lie groups
Xingya FAN, Jianxun HE, Jinsen XIAO, Wenjun YUAN
Radon transforms on Siegel-type nilpotent Lie groups
Let := be the Siegel-type nilpotent group, which can be identified as the Shilov boundary of Siegel domain of type II, where denotes the set of all Hermitian matrices. In this article, we use singular convolution operators to define Radon transform on and obtain the inversion formulas of Radon transforms. Moveover, we show that Radon transform on is a unitary operator from Sobolev space Wn;2 into L2():
Siegel domain / Siegel-type nilpotent group / Fourier transform / Radon transform
[1] |
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Comm Pure Appl Math, 1961, 14: 187–214
CrossRef
Google scholar
|
[2] |
Bargmann V. On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Comm Pure Appl Math, 1967, 20: 1–101
CrossRef
Google scholar
|
[3] |
Carlton E. A Plancherel formula for idyllic nilpotent Lie groups. Trans Amer Math Soc, 1976, 224: 1–42
CrossRef
Google scholar
|
[4] |
Damek E, Hulanicki A, Müller D, Peloso M M. Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom Funct Anal, 2000, 10: 1090–1117
CrossRef
Google scholar
|
[5] |
Dooley A, Zhang G K. Algebras of invariant functions on the Shilov boundaries of Siegel domains. Proc Amer Math Soc, 1998, 126: 3693–3699
CrossRef
Google scholar
|
[6] |
Faraut J, Korányi A. Analysis on Symmetric Cones. Oxford: Oxford Univ Press, 1994
|
[7] |
Felix R. Radon-transformation auf nilpotenten Lie-gruppen. Invent Math, 1993, 112: 413–443
CrossRef
Google scholar
|
[8] |
Geller D, Stein E M. Estimates convolution operators on the Heisenberg group. Bull Amer Math Soc (N S), 1984, 267: 99–103
CrossRef
Google scholar
|
[9] |
He J X, Liu H P. Inversion of the Radon transform associated with the classical domain of type one. Internat J Math, 2005, 16: 875–887
CrossRef
Google scholar
|
[10] |
He J X, Liu H P. Admissible wavelets and inverse Radon transform associated with the affine homogeneous Siegel domains of type II. Comm Anal Geom, 2007, 15: 1–28
CrossRef
Google scholar
|
[11] |
He J X, Liu H P. Wavelet transform and Radon transform on the quaternion Heisenberg group. Acta Math Sin (Engl Ser), 2014, 30: 619–636
CrossRef
Google scholar
|
[12] |
Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York-London: Academic Press, 1978
|
[13] |
Helgason S. Integral Geometry and Radon Transforms. New York: Springer, 2011
CrossRef
Google scholar
|
[14] |
Howe R. On the role of the Heisenberg group in harmonic analysis. Bull Amer Math Soc (N S), 1980, 3: 821–843
CrossRef
Google scholar
|
[15] |
Hua L K. Harmonic Analysis of Functions of Several Complex Variables on the Classical Domains. Providence: Amer Math Soc, 1963
CrossRef
Google scholar
|
[16] |
Korányi A, Wolf A. Realization of Hermitian symmetric spaces as generalized halfplanes. Ann of Math, 1965, 81(2): 265–288
CrossRef
Google scholar
|
[17] |
Moore C, Wolf A. Square integrable representations of nilpotent groups. Trans Amer Math Soc, 1973, 185: 445–462
CrossRef
Google scholar
|
[18] |
Ogden R, Vági S. Harmonic analysis of a nilpotent group and function theory of Siegel domains of type II. Adv Math, 1979, 33: 31–92
CrossRef
Google scholar
|
[19] |
Ørsted B, Zhang G K. Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ Math J, 1994, 43: 551–583
CrossRef
Google scholar
|
[20] |
Peetre J. The Weyl transform and Laguerre polynomials. Matematiche (Catania), 1972, 27: 301–323
|
[21] |
Peng L Z, Zhang G K. Radon transform on H-type and Siegel-type nilpotent groups. Internat J Math, 2007, 18: 1061–1070
CrossRef
Google scholar
|
[22] |
Ricci F, Stein E M. Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J Funct Anal, 1989, 86: 360–389
CrossRef
Google scholar
|
[23] |
Rossi H, Vergne M. Group representations on Hilbert spaces defined in terms of ∂‾b-cohomology on the Shilov boundary of a Siegel domain. Pacific J Math, 1976, 65: 193–207
CrossRef
Google scholar
|
[24] |
Rubin B. The Radon transform on the Heisenberg group and the transversal Radon transform. J Funct Anal, 2012, 262: 234–272
CrossRef
Google scholar
|
[25] |
Satake I. Algebraic Structures of Symmetric Domains. Princeton: Princeton Univ Press, 1980
CrossRef
Google scholar
|
[26] |
Shabat B. Introduction to Complex Analysis, Part II: Functions of Several Variables. Providence: Amer Math Soc, 1992
CrossRef
Google scholar
|
[27] |
Strichartz R. Lpharmonic analysis and Radon transforms on the Heisenberg group. J Funct Anal, 1991, 96: 350–406
CrossRef
Google scholar
|
[28] |
Wolf A. Harmonic Analysis on Commutative Spaces. Providence: Amer Math Soc, 2007
CrossRef
Google scholar
|
[29] |
Wolf A. Infinite dimensional multiplicity free spaces III: matrix coefficients and regular functions. Math Ann, 2011, 349: 263{299
CrossRef
Google scholar
|
[30] |
Zhang G K. Radon transform on symmetric matrix domains. Trans Amer Math Soc, 2009, 361: 1351–1369
CrossRef
Google scholar
|
/
〈 | 〉 |