RESEARCH ARTICLE

Non-leaving-face property for marked surfaces

  • Thomas BRÜSTLE 1 ,
  • Jie ZHANG , 2
Expand
  • 1. Département de Mathématiques, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
  • 2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

Received date: 12 Jul 2018

Accepted date: 09 Apr 2019

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We consider the polytope arising from a marked surface by flips of triangulations. D. D. Sleator, R. E. Tarjan, and W. P. Thurston [J. Amer. Math. Soc., 1988, 1(3): 647{681] studied the diameter of the associahedron, which is the polytope arising from a marked disc by flips of triangulations. They showed that every shortest path between two vertices in a face does not leave that face. We give a new method, which is different from the one used by V. Disarlo and H. Parlier [arXiv: 1411.4285] to establish the same non-leaving-face property for all unpunctured marked surfaces.

Cite this article

Thomas BRÜSTLE , Jie ZHANG . Non-leaving-face property for marked surfaces[J]. Frontiers of Mathematics in China, 2019 , 14(3) : 521 -534 . DOI: 10.1007/s11464-019-0767-7

1
Brüstle T, Qiu Y. Tagged mapping class groups I: Auslander-Reiten translation. Math Z, 2015, 279(3): 1103–1120

DOI

2
Brüstle T, Yang D. Ordered exchange graphs. In: Benson D J, Krause H, Skowro?nski A, eds. Advances in Representation Theory of Algebras. EMS Ser Congr Rep. Z?urich: Eur Math Soc, 2013, 135–193

DOI

3
Brüstle T, Zhang J. On the cluster category of a marked surface without punctures. Algebra Number Theory, 2011, 5(4): 529–566

DOI

4
Brüstle T,Zhang J. A module-theoretic interpretation of Schiffler's expansion formula. Comm Algebra, 2013, 41(1): 260–283

DOI

5
Buan A B, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572–618

DOI

6
Ceballos C, Pilaud V. The diameter of type D associahedra and the non-leaving-face property. European J Combin, 2016, 51: 109–124

7
Chapoton F, Fomin S, Zelevinsky A. Polytopal realizations of generalized associahedra. Canad Math Bull, 2002, 45(4): 537–566

DOI

8
Disarlo V, Parlier H. The geometry of flip graphs and mapping class groups. arXiv: 1411.4285

9
Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83–146

DOI

10
Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497–529

DOI

11
Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63–121

DOI

12
Hohlweg C, Lange C E M C, Thomas H. Permutahedra and generalized associahedra. Adv Math, 2011, 226(1): 608–640

DOI

13
Labardini-Fragoso D. Quivers with potentials associated to triangulated surfaces. Proc Lond Math Soc (3), 2009, 98(3): 797–839

DOI

14
Parlier H, Pournin L. Once punctured disks, non-convex polygons, and pointihedra. arXiv: 1602.04576

15
Parlier H, Pournin L. Flip-graph moduli spaces of filling surfaces. J Eur Math Soc (JEMS), 2017, 19(9): 2697–2737

DOI

16
Parlier H, Pournin L. Modular flip-graphs of one-holed surfaces. European J Combin, 2018, 67: 158–173

DOI

17
Pournin L. The diameter of associahedra. Adv Math, 2014, 259: 13–42

DOI

18
Reading N. Cambrian lattices. Adv Math, 2006, 205(2): 313–353

DOI

19
Sleator D D, Tarjan R E, Thurston W P. Rotation distance, triangulations, and hyperbolic geometry. J Amer Math Soc, 1988, 1(3): 647–681

DOI

20
Williams N. W-associahedra have the non-leaving-face property. European J Combin, 2017, 62: 272–285

DOI

Outlines

/