Non-leaving-face property for marked surfaces

Thomas BRÜSTLE , Jie ZHANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 521 -534.

PDF (610KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 521 -534. DOI: 10.1007/s11464-019-0767-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Non-leaving-face property for marked surfaces

Author information +
History +
PDF (610KB)

Abstract

We consider the polytope arising from a marked surface by flips of triangulations. D. D. Sleator, R. E. Tarjan, and W. P. Thurston [J. Amer. Math. Soc., 1988, 1(3): 647{681] studied the diameter of the associahedron, which is the polytope arising from a marked disc by flips of triangulations. They showed that every shortest path between two vertices in a face does not leave that face. We give a new method, which is different from the one used by V. Disarlo and H. Parlier [arXiv: 1411.4285] to establish the same non-leaving-face property for all unpunctured marked surfaces.

Keywords

Marked surface / non-leaving-face property / exchange graph

Cite this article

Download citation ▾
Thomas BRÜSTLE, Jie ZHANG. Non-leaving-face property for marked surfaces. Front. Math. China, 2019, 14(3): 521-534 DOI:10.1007/s11464-019-0767-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brüstle T, Qiu Y. Tagged mapping class groups I: Auslander-Reiten translation. Math Z, 2015, 279(3): 1103–1120

[2]

Brüstle T, Yang D. Ordered exchange graphs. In: Benson D J, Krause H, Skowro?nski A, eds. Advances in Representation Theory of Algebras. EMS Ser Congr Rep. Z?urich: Eur Math Soc, 2013, 135–193

[3]

Brüstle T, Zhang J. On the cluster category of a marked surface without punctures. Algebra Number Theory, 2011, 5(4): 529–566

[4]

Brüstle T,Zhang J. A module-theoretic interpretation of Schiffler's expansion formula. Comm Algebra, 2013, 41(1): 260–283

[5]

Buan A B, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math, 2006, 204(2): 572–618

[6]

Ceballos C, Pilaud V. The diameter of type D associahedra and the non-leaving-face property. European J Combin, 2016, 51: 109–124

[7]

Chapoton F, Fomin S, Zelevinsky A. Polytopal realizations of generalized associahedra. Canad Math Bull, 2002, 45(4): 537–566

[8]

Disarlo V, Parlier H. The geometry of flip graphs and mapping class groups. arXiv: 1411.4285

[9]

Fomin S, Shapiro M, Thurston D. Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math, 2008, 201(1): 83–146

[10]

Fomin S, Zelevinsky A. Cluster algebras. I. Foundations. J Amer Math Soc, 2002, 15(2): 497–529

[11]

Fomin S, Zelevinsky A. Cluster algebras. II. Finite type classification. Invent Math, 2003, 154(1): 63–121

[12]

Hohlweg C, Lange C E M C, Thomas H. Permutahedra and generalized associahedra. Adv Math, 2011, 226(1): 608–640

[13]

Labardini-Fragoso D. Quivers with potentials associated to triangulated surfaces. Proc Lond Math Soc (3), 2009, 98(3): 797–839

[14]

Parlier H, Pournin L. Once punctured disks, non-convex polygons, and pointihedra. arXiv: 1602.04576

[15]

Parlier H, Pournin L. Flip-graph moduli spaces of filling surfaces. J Eur Math Soc (JEMS), 2017, 19(9): 2697–2737

[16]

Parlier H, Pournin L. Modular flip-graphs of one-holed surfaces. European J Combin, 2018, 67: 158–173

[17]

Pournin L. The diameter of associahedra. Adv Math, 2014, 259: 13–42

[18]

Reading N. Cambrian lattices. Adv Math, 2006, 205(2): 313–353

[19]

Sleator D D, Tarjan R E, Thurston W P. Rotation distance, triangulations, and hyperbolic geometry. J Amer Math Soc, 1988, 1(3): 647–681

[20]

Williams N. W-associahedra have the non-leaving-face property. European J Combin, 2017, 62: 272–285

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (610KB)

662

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/