Frontiers of Mathematics in China >
Development of powerful algorithm for maximal eigenpair
Received date: 29 Mar 2019
Accepted date: 30 Apr 2019
Published date: 15 Jun 2019
Copyright
Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computing the sub-maximal eigenpair is also introduced. The key ideas for each critical improvement are explained. To illustrate the present algorithm and compare it with the related algorithms, more than 10 examples are included.
Mu-Fa CHEN , Yue-Shuang LI . Development of powerful algorithm for maximal eigenpair[J]. Frontiers of Mathematics in China, 2019 , 14(3) : 493 -519 . DOI: 10.1007/s11464-019-0769-5
1 |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
|
2 |
Chen M F. Speed of stability for birth{death processes. Front Math China, 2010, 5(3): 379–515
|
3 |
Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309
|
4 |
Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
|
5 |
Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297
|
6 |
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
|
7 |
Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329
|
8 |
Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311
|
9 |
Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32
|
10 |
Cipra B A. The best of the 20th century: Editors name top 10 algorithms. SIAM News, 2000, 33(4): 1–2
|
11 |
Frolov A V, Voevodin V V, Teplov A. Thomas algorithm, pointwise version.
|
12 |
From Wikipedia.Tridiagonal matrix algorithm.
|
13 |
Golub G H,van der Vorst H A. Eigenvalue computation in the 20th century. J Comput Appl Math, 2000, 123(1{2): 35–65
|
14 |
Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342
|
15 |
Moler C. Llewellyn Thomas.
|
16 |
Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103
|
17 |
Stewart G W. The decompositional approach to matrix computation. IEEE Comput Sci Eng, 2000, 2(1): 50–59
|
18 |
Tang T, Yang J. Computing the maximal eigenpairs of large size tridiagonal matrices with O(1) number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894
|
19 |
van der Vorst H A, Golub G H. 150 Years old and still alive: eigenproblems. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis. Oxford: Oxford Univ Press, 1997, 93–119
|
/
〈 | 〉 |