SURVEY ARTICLE

Development of powerful algorithm for maximal eigenpair

  • Mu-Fa CHEN ,
  • Yue-Shuang LI
Expand
  • School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China

Received date: 29 Mar 2019

Accepted date: 30 Apr 2019

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computing the sub-maximal eigenpair is also introduced. The key ideas for each critical improvement are explained. To illustrate the present algorithm and compare it with the related algorithms, more than 10 examples are included.

Cite this article

Mu-Fa CHEN , Yue-Shuang LI . Development of powerful algorithm for maximal eigenpair[J]. Frontiers of Mathematics in China, 2019 , 14(3) : 493 -519 . DOI: 10.1007/s11464-019-0769-5

1
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005

2
Chen M F. Speed of stability for birth{death processes. Front Math China, 2010, 5(3): 379–515

DOI

3
Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309

DOI

4
Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418

DOI

5
Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297

6
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043

DOI

7
Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329

DOI

8
Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311

DOI

9
Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32

DOI

10
Cipra B A. The best of the 20th century: Editors name top 10 algorithms. SIAM News, 2000, 33(4): 1–2

11
Frolov A V, Voevodin V V, Teplov A. Thomas algorithm, pointwise version.

12
From Wikipedia.Tridiagonal matrix algorithm.

13
Golub G H,van der Vorst H A. Eigenvalue computation in the 20th century. J Comput Appl Math, 2000, 123(1{2): 35–65

DOI

14
Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342

DOI

15
Moler C. Llewellyn Thomas.

16
Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103

DOI

17
Stewart G W. The decompositional approach to matrix computation. IEEE Comput Sci Eng, 2000, 2(1): 50–59

DOI

18
Tang T, Yang J. Computing the maximal eigenpairs of large size tridiagonal matrices with O(1) number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894

DOI

19
van der Vorst H A, Golub G H. 150 Years old and still alive: eigenproblems. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis. Oxford: Oxford Univ Press, 1997, 93–119

Outlines

/