Development of powerful algorithm for maximal eigenpair
Mu-Fa CHEN, Yue-Shuang LI
Development of powerful algorithm for maximal eigenpair
Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computing the sub-maximal eigenpair is also introduced. The key ideas for each critical improvement are explained. To illustrate the present algorithm and compare it with the related algorithms, more than 10 examples are included.
Powerful algorithm / maximal eigenpair / sub-maximal eigenpair / Hermitizable tridiagonal matrix
[1] |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
|
[2] |
Chen M F. Speed of stability for birth{death processes. Front Math China, 2010, 5(3): 379–515
CrossRef
Google scholar
|
[3] |
Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309
CrossRef
Google scholar
|
[4] |
Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
CrossRef
Google scholar
|
[5] |
Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297
|
[6] |
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
CrossRef
Google scholar
|
[7] |
Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329
CrossRef
Google scholar
|
[8] |
Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311
CrossRef
Google scholar
|
[9] |
Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32
CrossRef
Google scholar
|
[10] |
Cipra B A. The best of the 20th century: Editors name top 10 algorithms. SIAM News, 2000, 33(4): 1–2
|
[11] |
Frolov A V, Voevodin V V, Teplov A. Thomas algorithm, pointwise version.
|
[12] |
From Wikipedia.Tridiagonal matrix algorithm.
|
[13] |
Golub G H,van der Vorst H A. Eigenvalue computation in the 20th century. J Comput Appl Math, 2000, 123(1{2): 35–65
CrossRef
Google scholar
|
[14] |
Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342
CrossRef
Google scholar
|
[15] |
Moler C. Llewellyn Thomas.
|
[16] |
Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103
CrossRef
Google scholar
|
[17] |
Stewart G W. The decompositional approach to matrix computation. IEEE Comput Sci Eng, 2000, 2(1): 50–59
CrossRef
Google scholar
|
[18] |
Tang T, Yang J. Computing the maximal eigenpairs of large size tridiagonal matrices with O(1) number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894
CrossRef
Google scholar
|
[19] |
van der Vorst H A, Golub G H. 150 Years old and still alive: eigenproblems. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis. Oxford: Oxford Univ Press, 1997, 93–119
|
/
〈 | 〉 |