Development of powerful algorithm for maximal eigenpair

Mu-Fa CHEN, Yue-Shuang LI

PDF(438 KB)
PDF(438 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 493-519. DOI: 10.1007/s11464-019-0769-5
SURVEY ARTICLE
SURVEY ARTICLE

Development of powerful algorithm for maximal eigenpair

Author information +
History +

Abstract

Based on a series of recent papers, a powerful algorithm is reformulated for computing the maximal eigenpair of self-adjoint complex tridiagonal matrices. In parallel, the same problem in a particular case for computing the sub-maximal eigenpair is also introduced. The key ideas for each critical improvement are explained. To illustrate the present algorithm and compare it with the related algorithms, more than 10 examples are included.

Keywords

Powerful algorithm / maximal eigenpair / sub-maximal eigenpair / Hermitizable tridiagonal matrix

Cite this article

Download citation ▾
Mu-Fa CHEN, Yue-Shuang LI. Development of powerful algorithm for maximal eigenpair. Front. Math. China, 2019, 14(3): 493‒519 https://doi.org/10.1007/s11464-019-0769-5

References

[1]
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
[2]
Chen M F. Speed of stability for birth{death processes. Front Math China, 2010, 5(3): 379–515
CrossRef Google scholar
[3]
Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309
CrossRef Google scholar
[4]
Chen M F. Effcient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
CrossRef Google scholar
[5]
Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297
[6]
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
CrossRef Google scholar
[7]
Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications (QTNA 2017). Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329
CrossRef Google scholar
[8]
Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311
CrossRef Google scholar
[9]
Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32
CrossRef Google scholar
[10]
Cipra B A. The best of the 20th century: Editors name top 10 algorithms. SIAM News, 2000, 33(4): 1–2
[11]
Frolov A V, Voevodin V V, Teplov A. Thomas algorithm, pointwise version.
[12]
From Wikipedia.Tridiagonal matrix algorithm.
[13]
Golub G H,van der Vorst H A. Eigenvalue computation in the 20th century. J Comput Appl Math, 2000, 123(1{2): 35–65
CrossRef Google scholar
[14]
Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342
CrossRef Google scholar
[15]
Moler C. Llewellyn Thomas.
[16]
Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103
CrossRef Google scholar
[17]
Stewart G W. The decompositional approach to matrix computation. IEEE Comput Sci Eng, 2000, 2(1): 50–59
CrossRef Google scholar
[18]
Tang T, Yang J. Computing the maximal eigenpairs of large size tridiagonal matrices with O(1) number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894
CrossRef Google scholar
[19]
van der Vorst H A, Golub G H. 150 Years old and still alive: eigenproblems. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis. Oxford: Oxford Univ Press, 1997, 93–119

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(438 KB)

Accesses

Citations

Detail

Sections
Recommended

/