RESEARCH ARTICLE

Derivative estimates of averaging operators and extension

  • Junyan ZHAO , 1 ,
  • Dashan FAN 2
Expand
  • 1. Department of Mathematics, Zhejiang University, Hangzhou 310027, China
  • 2. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Received date: 25 Dec 2018

Accepted date: 22 Feb 2019

Published date: 15 Apr 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We study the derivative operator of the generalized spherical mean Stγ. By considering a more general multiplier mγ,bΩ=Vn22+γ(|ξ|)|ξ|bΩ(ξ') and finding the smallest γ such that mγ,bΩ is an Hp multiplier, we obtain the optimal range of exponents (γ,β,p) to ensure the Hp(n) boundedness of βS1γf(x). As an application, we obtain the derivative estimates for the solution for the Cauchy problem of the wave equation on Hp(n) spaces.

Cite this article

Junyan ZHAO , Dashan FAN . Derivative estimates of averaging operators and extension[J]. Frontiers of Mathematics in China, 2019 , 14(2) : 475 -491 . DOI: 10.1007/s11464-019-0755-y

1
Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988

2
Bourgain J. Averages in the plane over convex curves and maximal operators. J Anal Math, 1986, 47: 69–85

DOI

3
Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summability of Fourier integrals. J Lond Math Soc (2), 1988, 38(3): 513–524

DOI

4
Chen J C, Fan D S, Sun L J. Hardy space estimates for the wave equation on compact Lie groups. J Funct Anal, 2010, 259(12): 3230–3264

DOI

5
Fan D S, Zhao F Y. Approximation properties of combination of multivariate averages on Hardy spaces. J Approx Theory, 2017, 223: 77–95

DOI

6
Gelfand I M, Shilov G E. Generalized Functions. Vol I: Properties and Operations. New York-London: Academic Press, 1964

7
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014

DOI

8
Lu S Z. Four Lectures on Real Hp Spaces. River Edge: World Scientific Publishing Co, Inc, 1995

DOI

9
Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo Sect IA Math, 1981, 28(2): 267–315

10
Peral J C. Lpestimates for the wave equation. J Funct Anal, 1980, 36(1): 114–145

DOI

11
Stein E M. Maximal functions I: Spherical means. Proc Natl Acad Sci USA, 1976, 73(7): 2174–2175

DOI

12
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math Ser, Vol 43. Princeton: Princeton Univ Press, 1993

DOI

13
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971

DOI

14
Zhao J Y, Fan D S. Certain averaging operators on Lebesgue spaces. Banach J Math Anal (to appear)

Outlines

/