Derivative estimates of averaging operators and extension

Junyan ZHAO, Dashan FAN

PDF(312 KB)
PDF(312 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 475-491. DOI: 10.1007/s11464-019-0755-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Derivative estimates of averaging operators and extension

Author information +
History +

Abstract

We study the derivative operator of the generalized spherical mean Stγ. By considering a more general multiplier mγ,bΩ=Vn22+γ(|ξ|)|ξ|bΩ(ξ') and finding the smallest γ such that mγ,bΩ is an Hp multiplier, we obtain the optimal range of exponents (γ,β,p) to ensure the Hp(n) boundedness of βS1γf(x). As an application, we obtain the derivative estimates for the solution for the Cauchy problem of the wave equation on Hp(n) spaces.

Keywords

Generalized spherical mean / Bessel function / Hp multiplier / wave equation / oscillatory integrals

Cite this article

Download citation ▾
Junyan ZHAO, Dashan FAN. Derivative estimates of averaging operators and extension. Front. Math. China, 2019, 14(2): 475‒491 https://doi.org/10.1007/s11464-019-0755-y

References

[1]
Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988
[2]
Bourgain J. Averages in the plane over convex curves and maximal operators. J Anal Math, 1986, 47: 69–85
CrossRef Google scholar
[3]
Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summability of Fourier integrals. J Lond Math Soc (2), 1988, 38(3): 513–524
CrossRef Google scholar
[4]
Chen J C, Fan D S, Sun L J. Hardy space estimates for the wave equation on compact Lie groups. J Funct Anal, 2010, 259(12): 3230–3264
CrossRef Google scholar
[5]
Fan D S, Zhao F Y. Approximation properties of combination of multivariate averages on Hardy spaces. J Approx Theory, 2017, 223: 77–95
CrossRef Google scholar
[6]
Gelfand I M, Shilov G E. Generalized Functions. Vol I: Properties and Operations. New York-London: Academic Press, 1964
[7]
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014
CrossRef Google scholar
[8]
Lu S Z. Four Lectures on Real Hp Spaces. River Edge: World Scientific Publishing Co, Inc, 1995
CrossRef Google scholar
[9]
Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo Sect IA Math, 1981, 28(2): 267–315
[10]
Peral J C. Lpestimates for the wave equation. J Funct Anal, 1980, 36(1): 114–145
CrossRef Google scholar
[11]
Stein E M. Maximal functions I: Spherical means. Proc Natl Acad Sci USA, 1976, 73(7): 2174–2175
CrossRef Google scholar
[12]
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math Ser, Vol 43. Princeton: Princeton Univ Press, 1993
CrossRef Google scholar
[13]
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971
CrossRef Google scholar
[14]
Zhao J Y, Fan D S. Certain averaging operators on Lebesgue spaces. Banach J Math Anal (to appear)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(312 KB)

Accesses

Citations

Detail

Sections
Recommended

/