Derivative estimates of averaging operators and extension

Junyan ZHAO , Dashan FAN

Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 475 -491.

PDF (312KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 475 -491. DOI: 10.1007/s11464-019-0755-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Derivative estimates of averaging operators and extension

Author information +
History +
PDF (312KB)

Abstract

We study the derivative operator of the generalized spherical mean Stγ. By considering a more general multiplier mγ,bΩ=Vn22+γ(|ξ|)|ξ|bΩ(ξ') and finding the smallest γ such that mγ,bΩ is an Hp multiplier, we obtain the optimal range of exponents (γ,β,p) to ensure the Hp(n) boundedness of βS1γf(x). As an application, we obtain the derivative estimates for the solution for the Cauchy problem of the wave equation on Hp(n) spaces.

Keywords

Generalized spherical mean / Bessel function / Hp multiplier / wave equation / oscillatory integrals

Cite this article

Download citation ▾
Junyan ZHAO, Dashan FAN. Derivative estimates of averaging operators and extension. Front. Math. China, 2019, 14(2): 475-491 DOI:10.1007/s11464-019-0755-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988

[2]

Bourgain J. Averages in the plane over convex curves and maximal operators. J Anal Math, 1986, 47: 69–85

[3]

Carbery A, Rubio de Francia J L, Vega L. Almost everywhere summability of Fourier integrals. J Lond Math Soc (2), 1988, 38(3): 513–524

[4]

Chen J C, Fan D S, Sun L J. Hardy space estimates for the wave equation on compact Lie groups. J Funct Anal, 2010, 259(12): 3230–3264

[5]

Fan D S, Zhao F Y. Approximation properties of combination of multivariate averages on Hardy spaces. J Approx Theory, 2017, 223: 77–95

[6]

Gelfand I M, Shilov G E. Generalized Functions. Vol I: Properties and Operations. New York-London: Academic Press, 1964

[7]

Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014

[8]

Lu S Z. Four Lectures on Real Hp Spaces. River Edge: World Scientific Publishing Co, Inc, 1995

[9]

Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo Sect IA Math, 1981, 28(2): 267–315

[10]

Peral J C. Lpestimates for the wave equation. J Funct Anal, 1980, 36(1): 114–145

[11]

Stein E M. Maximal functions I: Spherical means. Proc Natl Acad Sci USA, 1976, 73(7): 2174–2175

[12]

Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math Ser, Vol 43. Princeton: Princeton Univ Press, 1993

[13]

Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971

[14]

Zhao J Y, Fan D S. Certain averaging operators on Lebesgue spaces. Banach J Math Anal (to appear)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (312KB)

710

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/