Frontiers of Mathematics in China >
Low dimensional modules over quantum complete intersections in two variables
Received date: 06 Jan 2019
Accepted date: 27 Mar 2019
Published date: 15 Apr 2019
Copyright
We classify all the indecomposable modules of dimension≤5 over the quantum exterior algebra in two variables, and all the indecomposable modules of dimension≤3 over the quantum complete intersection in two variables, where m or n≥3, by giving explicitly their diagram presentations.
Hanyang YOU , Pu ZHANG . Low dimensional modules over quantum complete intersections in two variables[J]. Frontiers of Mathematics in China, 2019 , 14(2) : 449 -474 . DOI: 10.1007/s11464-019-0764-x
1 |
Assem I, Skowroński A. Iterated tileted algebras of type fAnAn˜. Math Z, 1987, 195: 269–290
|
2 |
Avramov L, Gasharov V, Peeva I. Complete intersection dimension. Publ Math Inst Hautes Etudes Sci, 1997, 86: 67–114
|
3 |
Barot M. Introduction to the Representation Theory of Algebras. Berlin: Springer-Verlag, 2015
|
4 |
Bergh P A. Ext-symmetry over quantum complete intersections. Arch Math (Basel), 2009, 92(6): 566–573
|
5 |
Bergh P A, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra Number Theory, 2008, 2(5): 501–522
|
6 |
Bergh P A, Erdmann K. The stable Auslander-Reiten quiver of a quantum complete intersection. Bull Lond Math Soc, 2011, 43(1): 79–90
|
7 |
Bergh P A, Oppermann S. Cohomology of twisted tensor products. J Algebra, 2008, 320(8): 3327–3338
|
8 |
Buchweitz R-O, Green E, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12(5-6): 805–816
|
9 |
Butler M C R, Ringel C M. Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm Algebra, 1987, 15: 145–179
|
10 |
Donovan P W, Freislich M R. The indecomposable representations of certain groups with dihedral Sylow subgroup. Math Ann, 1978, 238: 207–216
|
11 |
Liu S, Schulz R. The existence of bounded infinite DTr-orbits. Proc Amer Math Soc, 1994, 122: 1003–1005
|
12 |
Manin I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier (Grenoble), 1987, 37: 191–205
|
13 |
Marczinzik R. On stable modules that are not Gorenstein projective. arXiv: 1709.01132v3
|
14 |
Oppermann S. Hochschild cohomology and homology of quantum complete intersections. Algebra Number Theory, 2010, 4(7): 821–838
|
15 |
Ringel C M. The Liu-Schulz example. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras. CMS Conf Proc, Vol 18. Providence: Amer Math Soc, 1996, 587–600
|
16 |
Ringel C M. Exceptional modules are tree modules. Linear Algebra Appl, 1998, 275-276: 471–493
|
17 |
Ringel C M, Zhang P. Gorenstein-projective and semi-Gorenstein-projective modules. arXiv: 1808.01809v2
|
18 |
Schulz R. A non-projective module without self-extensions. Arch Math (Basel), 1994, 62(6): 497–500
|
19 |
Skowroski A, Waschbsch J. Representation-finite biserial algebras. J Reine Angew Math, 1983, 345: 172–181
|
20 |
Smith S P. Some finite dimensional algebra related to elliptic curves. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras and Related Topics. CMS Conf Proc, Vol 19. Providence: Amer Math Soc, 1996, 315{348
|
21 |
Wald B, Waschbüsch J. Tame biserial algebras. J Algebra, 1985, 95: 480–500
|
/
〈 | 〉 |