![](/develop/static/imgs/pdf.png)
Low dimensional modules over quantum complete intersections in two variables
Hanyang YOU, Pu ZHANG
Low dimensional modules over quantum complete intersections in two variables
We classify all the indecomposable modules of dimension≤5 over the quantum exterior algebra in two variables, and all the indecomposable modules of dimension≤3 over the quantum complete intersection in two variables, where m or n≥3, by giving explicitly their diagram presentations.
Quantum exterior algebra / quantum complete intersection / diagram presentation of a module
[1] |
Assem I, Skowroński A. Iterated tileted algebras of type fAnAn˜. Math Z, 1987, 195: 269–290
CrossRef
Google scholar
|
[2] |
Avramov L, Gasharov V, Peeva I. Complete intersection dimension. Publ Math Inst Hautes Etudes Sci, 1997, 86: 67–114
CrossRef
Google scholar
|
[3] |
Barot M. Introduction to the Representation Theory of Algebras. Berlin: Springer-Verlag, 2015
CrossRef
Google scholar
|
[4] |
Bergh P A. Ext-symmetry over quantum complete intersections. Arch Math (Basel), 2009, 92(6): 566–573
CrossRef
Google scholar
|
[5] |
Bergh P A, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra Number Theory, 2008, 2(5): 501–522
CrossRef
Google scholar
|
[6] |
Bergh P A, Erdmann K. The stable Auslander-Reiten quiver of a quantum complete intersection. Bull Lond Math Soc, 2011, 43(1): 79–90
CrossRef
Google scholar
|
[7] |
Bergh P A, Oppermann S. Cohomology of twisted tensor products. J Algebra, 2008, 320(8): 3327–3338
CrossRef
Google scholar
|
[8] |
Buchweitz R-O, Green E, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12(5-6): 805–816
CrossRef
Google scholar
|
[9] |
Butler M C R, Ringel C M. Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm Algebra, 1987, 15: 145–179
CrossRef
Google scholar
|
[10] |
Donovan P W, Freislich M R. The indecomposable representations of certain groups with dihedral Sylow subgroup. Math Ann, 1978, 238: 207–216
CrossRef
Google scholar
|
[11] |
Liu S, Schulz R. The existence of bounded infinite DTr-orbits. Proc Amer Math Soc, 1994, 122: 1003–1005
CrossRef
Google scholar
|
[12] |
Manin I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier (Grenoble), 1987, 37: 191–205
CrossRef
Google scholar
|
[13] |
Marczinzik R. On stable modules that are not Gorenstein projective. arXiv: 1709.01132v3
|
[14] |
Oppermann S. Hochschild cohomology and homology of quantum complete intersections. Algebra Number Theory, 2010, 4(7): 821–838
CrossRef
Google scholar
|
[15] |
Ringel C M. The Liu-Schulz example. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras. CMS Conf Proc, Vol 18. Providence: Amer Math Soc, 1996, 587–600
|
[16] |
Ringel C M. Exceptional modules are tree modules. Linear Algebra Appl, 1998, 275-276: 471–493
CrossRef
Google scholar
|
[17] |
Ringel C M, Zhang P. Gorenstein-projective and semi-Gorenstein-projective modules. arXiv: 1808.01809v2
|
[18] |
Schulz R. A non-projective module without self-extensions. Arch Math (Basel), 1994, 62(6): 497–500
CrossRef
Google scholar
|
[19] |
Skowroski A, Waschbsch J. Representation-finite biserial algebras. J Reine Angew Math, 1983, 345: 172–181
CrossRef
Google scholar
|
[20] |
Smith S P. Some finite dimensional algebra related to elliptic curves. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras and Related Topics. CMS Conf Proc, Vol 19. Providence: Amer Math Soc, 1996, 315{348
|
[21] |
Wald B, Waschbüsch J. Tame biserial algebras. J Algebra, 1985, 95: 480–500
CrossRef
Google scholar
|
/
〈 |
|
〉 |