Low dimensional modules over quantum complete intersections in two variables

Hanyang YOU , Pu ZHANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 449 -474.

PDF (326KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 449 -474. DOI: 10.1007/s11464-019-0764-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Low dimensional modules over quantum complete intersections in two variables

Author information +
History +
PDF (326KB)

Abstract

We classify all the indecomposable modules of dimension≤5 over the quantum exterior algebra k(x,y)/x2,y2,xy+qyx in two variables, and all the indecomposable modules of dimension≤3 over the quantum complete intersection k(x,y)/xm,yn,xy+qyx in two variables, where m or n≥3, by giving explicitly their diagram presentations.

Keywords

Quantum exterior algebra / quantum complete intersection / diagram presentation of a module

Cite this article

Download citation ▾
Hanyang YOU, Pu ZHANG. Low dimensional modules over quantum complete intersections in two variables. Front. Math. China, 2019, 14(2): 449-474 DOI:10.1007/s11464-019-0764-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Assem I, Skowroński A. Iterated tileted algebras of type fAnAn˜. Math Z, 1987, 195: 269–290

[2]

Avramov L, Gasharov V, Peeva I. Complete intersection dimension. Publ Math Inst Hautes Etudes Sci, 1997, 86: 67–114

[3]

Barot M. Introduction to the Representation Theory of Algebras. Berlin: Springer-Verlag, 2015

[4]

Bergh P A. Ext-symmetry over quantum complete intersections. Arch Math (Basel), 2009, 92(6): 566–573

[5]

Bergh P A, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra Number Theory, 2008, 2(5): 501–522

[6]

Bergh P A, Erdmann K. The stable Auslander-Reiten quiver of a quantum complete intersection. Bull Lond Math Soc, 2011, 43(1): 79–90

[7]

Bergh P A, Oppermann S. Cohomology of twisted tensor products. J Algebra, 2008, 320(8): 3327–3338

[8]

Buchweitz R-O, Green E, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12(5-6): 805–816

[9]

Butler M C R, Ringel C M. Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm Algebra, 1987, 15: 145–179

[10]

Donovan P W, Freislich M R. The indecomposable representations of certain groups with dihedral Sylow subgroup. Math Ann, 1978, 238: 207–216

[11]

Liu S, Schulz R. The existence of bounded infinite DTr-orbits. Proc Amer Math Soc, 1994, 122: 1003–1005

[12]

Manin I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier (Grenoble), 1987, 37: 191–205

[13]

Marczinzik R. On stable modules that are not Gorenstein projective. arXiv: 1709.01132v3

[14]

Oppermann S. Hochschild cohomology and homology of quantum complete intersections. Algebra Number Theory, 2010, 4(7): 821–838

[15]

Ringel C M. The Liu-Schulz example. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras. CMS Conf Proc, Vol 18. Providence: Amer Math Soc, 1996, 587–600

[16]

Ringel C M. Exceptional modules are tree modules. Linear Algebra Appl, 1998, 275-276: 471–493

[17]

Ringel C M, Zhang P. Gorenstein-projective and semi-Gorenstein-projective modules. arXiv: 1808.01809v2

[18]

Schulz R. A non-projective module without self-extensions. Arch Math (Basel), 1994, 62(6): 497–500

[19]

Skowroski A, Waschbsch J. Representation-finite biserial algebras. J Reine Angew Math, 1983, 345: 172–181

[20]

Smith S P. Some finite dimensional algebra related to elliptic curves. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras and Related Topics. CMS Conf Proc, Vol 19. Providence: Amer Math Soc, 1996, 315{348

[21]

Wald B, Waschbüsch J. Tame biserial algebras. J Algebra, 1985, 95: 480–500

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (326KB)

671

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/