Low dimensional modules over quantum complete intersections in two variables

Hanyang YOU, Pu ZHANG

PDF(326 KB)
PDF(326 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 449-474. DOI: 10.1007/s11464-019-0764-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Low dimensional modules over quantum complete intersections in two variables

Author information +
History +

Abstract

We classify all the indecomposable modules of dimension≤5 over the quantum exterior algebra k(x,y)/x2,y2,xy+qyx in two variables, and all the indecomposable modules of dimension≤3 over the quantum complete intersection k(x,y)/xm,yn,xy+qyx in two variables, where m or n≥3, by giving explicitly their diagram presentations.

Keywords

Quantum exterior algebra / quantum complete intersection / diagram presentation of a module

Cite this article

Download citation ▾
Hanyang YOU, Pu ZHANG. Low dimensional modules over quantum complete intersections in two variables. Front. Math. China, 2019, 14(2): 449‒474 https://doi.org/10.1007/s11464-019-0764-x

References

[1]
Assem I, Skowroński A. Iterated tileted algebras of type fAnAn˜. Math Z, 1987, 195: 269–290
CrossRef Google scholar
[2]
Avramov L, Gasharov V, Peeva I. Complete intersection dimension. Publ Math Inst Hautes Etudes Sci, 1997, 86: 67–114
CrossRef Google scholar
[3]
Barot M. Introduction to the Representation Theory of Algebras. Berlin: Springer-Verlag, 2015
CrossRef Google scholar
[4]
Bergh P A. Ext-symmetry over quantum complete intersections. Arch Math (Basel), 2009, 92(6): 566–573
CrossRef Google scholar
[5]
Bergh P A, Erdmann K. Homology and cohomology of quantum complete intersections. Algebra Number Theory, 2008, 2(5): 501–522
CrossRef Google scholar
[6]
Bergh P A, Erdmann K. The stable Auslander-Reiten quiver of a quantum complete intersection. Bull Lond Math Soc, 2011, 43(1): 79–90
CrossRef Google scholar
[7]
Bergh P A, Oppermann S. Cohomology of twisted tensor products. J Algebra, 2008, 320(8): 3327–3338
CrossRef Google scholar
[8]
Buchweitz R-O, Green E, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12(5-6): 805–816
CrossRef Google scholar
[9]
Butler M C R, Ringel C M. Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm Algebra, 1987, 15: 145–179
CrossRef Google scholar
[10]
Donovan P W, Freislich M R. The indecomposable representations of certain groups with dihedral Sylow subgroup. Math Ann, 1978, 238: 207–216
CrossRef Google scholar
[11]
Liu S, Schulz R. The existence of bounded infinite DTr-orbits. Proc Amer Math Soc, 1994, 122: 1003–1005
CrossRef Google scholar
[12]
Manin I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier (Grenoble), 1987, 37: 191–205
CrossRef Google scholar
[13]
Marczinzik R. On stable modules that are not Gorenstein projective. arXiv: 1709.01132v3
[14]
Oppermann S. Hochschild cohomology and homology of quantum complete intersections. Algebra Number Theory, 2010, 4(7): 821–838
CrossRef Google scholar
[15]
Ringel C M. The Liu-Schulz example. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras. CMS Conf Proc, Vol 18. Providence: Amer Math Soc, 1996, 587–600
[16]
Ringel C M. Exceptional modules are tree modules. Linear Algebra Appl, 1998, 275-276: 471–493
CrossRef Google scholar
[17]
Ringel C M, Zhang P. Gorenstein-projective and semi-Gorenstein-projective modules. arXiv: 1808.01809v2
[18]
Schulz R. A non-projective module without self-extensions. Arch Math (Basel), 1994, 62(6): 497–500
CrossRef Google scholar
[19]
Skowroski A, Waschbsch J. Representation-finite biserial algebras. J Reine Angew Math, 1983, 345: 172–181
CrossRef Google scholar
[20]
Smith S P. Some finite dimensional algebra related to elliptic curves. In: Bautista R, Martínez-Villa R, de la Pena J A, eds. Representation Theory of Algebras and Related Topics. CMS Conf Proc, Vol 19. Providence: Amer Math Soc, 1996, 315{348
[21]
Wald B, Waschbüsch J. Tame biserial algebras. J Algebra, 1985, 95: 480–500
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(326 KB)

Accesses

Citations

Detail

Sections
Recommended

/