RESEARCH ARTICLE

Tensor product weight modules of Schrödinger-Virasoro algebras

  • Dong LIU 1 ,
  • Xiufu ZHANG , 2
Expand
  • 1. Department of Mathematics, Huzhou University, Huzhou 313000, China
  • 2. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

Received date: 13 Nov 2018

Accepted date: 01 Mar 2019

Published date: 15 Apr 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

It is known that the Schrödinger-Virasoro algebras, including the original Schrödinger-Virasoro algebra and the twisted Schrödinger-Virasoro algebra, are playing important roles in mathematics and statistical physics. In this paper, we study the tensor products of weight modules over the Schrödinger-Virasoro algebras. The irreducibility criterion for the tensor products of highest weight modules with intermediate series modules over the Schrödinger-Virasoro algebra is obtained.

Cite this article

Dong LIU , Xiufu ZHANG . Tensor product weight modules of Schrödinger-Virasoro algebras[J]. Frontiers of Mathematics in China, 2019 , 14(2) : 381 -393 . DOI: 10.1007/s11464-019-0759-7

1
Alday L F, Gaiotto D, Tachikawa Y. Liouville Correlation Functions from Fourdimensional Gauge Theories. Lett Math Phys, 2010, 91(2): 167–197

DOI

2
Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1–36

DOI

3
Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2: J Math Phys, 1974, 15: 350–359

DOI

4
Astashkevich A. On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras. Comm Math Phys, 1997, 186(3): 531–562

DOI

5
Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull, 2003, 46(4): 529–537

DOI

6
Chen H, Guo X, Zhao K. Tensor product weight modules over the Virasoro algebra. J Lond Math Soc (2), 2013, 88: 829–834

DOI

7
Chen H, Hong Y, Su Y.A family of new simple modules over the Schrödinger-Virasoro algebra. J Pure Appl Algebra, 2018, 222: 900–913

DOI

8
Feigin B, Fuchs D. Representations of the Virasoro algebra. In: Representation of Lie Groups and Related Topics. Adv Stud Contemp Math, Vol 7. New York: Gordon and Breach, 1990, 465–554

9
Gao S, Jiang C, Pei Y. Low dimensional cohomology groups of the Lie algebras W(a; b): Comm Algebra, 2011, 39(2): 397–423

DOI

10
Guo X, Lu R, Zhao K. Irreducible Modules over the Virasoro Algebra. Doc Math, 2011, 16: 709–721

11
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75(5-6): 1023–1061

DOI

12
Li J, Su Y, Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512

DOI

13
Liu D. Classification of Harish-Chandra modules over some Lie algebras related to the Virasoro algebra. J Algebra, 2016, 447: 548–559

DOI

14
Liu D, Jiang C. Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra. J Math Phys, 2018, 49(1): 012901–13pp)

DOI

15
Liu D, Pei Y. Deformations on the twisted Heisenberg-Virasoro algebra. Chin Ann Math Ser B, 2019, 40(1): 111–116

DOI

16
Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48

DOI

17
Liu D, Zhu L. The generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297–310

DOI

18
Lu R, Zhao K. Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. Commun Contemp Math, 2010, 12(2): 183–205

DOI

19
Radobolja G. Subsingular vectors in Verma modules, and tensor product modules over the twisted Heisenberg-Virasoro algebra and W(2; 2) algebra. J Math Phys, 2013, 54(7): 071701(24pp)

DOI

20
Radobolja G. Application of vertex algebras to the structure theory of certain representations over the Virasoro algebra. Algebr Represent Theory, 2014, 17(4): 1013–1034

DOI

21
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477–1529

DOI

22
Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro Algebra. Comm Algebra, 2006, 34: 2547–2558

DOI

23
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322(4): 1379–1394

DOI

24
Zhang H. A class of representations over the Virasoro algebra. J Algebra, 1997, 190(1): 1{10

DOI

25
Zhang X. Tensor product weight representations of the Neveu-Schwarz algebra. Comm Algebra, 2015, 43: 3754–3775

DOI

Outlines

/