RESEARCH ARTICLE

Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras

  • Haibo CHEN 1 ,
  • Xiansheng DAI 2 ,
  • Hengyun YANG , 3
Expand
  • 1. School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
  • 2. School of Mathematics Sciences, Guizhou Normal University, Guiyang 550001, China
  • 3. Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China

Received date: 31 Mar 2016

Accepted date: 01 Mar 2019

Published date: 15 Apr 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv. Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv are triangular coboundary.

Cite this article

Haibo CHEN , Xiansheng DAI , Hengyun YANG . Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras[J]. Frontiers of Mathematics in China, 2019 , 14(2) : 239 -260 . DOI: 10.1007/s11464-019-0761-0

1
Chen H, Fan G, Han J, Su Y. Structures of generalized loop Schrödinger-Virasoro algebras. Mediterr J Math, 2018, 15: 125

DOI

2
Chen H, Han J, Su Y, Xu Y. Loop Schrödinger-Virasoro Lie conformal algebra. Internat J Math, 2016, 6: 1650057

DOI

3
Drinfeld V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Sov Math Dokl, 1983, 28: 667–671

4
Drinfeld V G. Quantum groups. In: Proceedings of the International Congress of Mathematicians, 1986, Berkeley, California, USA, Vol 1. Providence: Amer Math Soc, 1987, 798–820

5
Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Math (N S), 1996, 2: 1–41

DOI

6
Fa H, Li J, Zheng Y. Lie bialgebra structures on the deformative Schrödinger-Virasoro algebras. J Math Phys, 2015, 56: 111706

DOI

7
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50: 083504

DOI

8
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023–1029

DOI

9
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512

DOI

10
Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48

DOI

11
Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151: 67–88

DOI

12
Song G, Su Y. Lie bialgebras of generalized Witt type. Sci China Ser A, 2006, 49: 533–544

DOI

13
Song G, Su Y. Dual Lie bialgebras of Witt and Virasoro types. Sci China Math, 2013, 43: 1093–1102

DOI

14
Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87: 301–312

DOI

15
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322: 1379–1394

DOI

16
Wang W, Li J, Xin B. Central extensions and derivations of generalized Schrödinger-Virasoro algebra. Algebra Colloq, 2012, 19: 735–744

DOI

17
Weibel C A. An Introduction to Homological Algebra. Cambridge Stud Adv Math. Cambridge: Cambridge Univ Press, 1994

DOI

18
Wu H, Wang S, Yue X. Structures of generalized loop Virasoro algebras. Comm Algebra, 2014, 42: 1545–1558

DOI

19
Wu H, Wang S. Yue X. Lie bialgebras of generalized loop Virasoro algebras. Chin Ann Math Ser B, 2015, 36(3): 437–446

DOI

20
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Engl Ser), 2006, 22: 1915–1922

DOI

21
Yang H, Su Y. Lie super-bialgebra structures on generalized super-virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225–239

DOI

22
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36: 1537–1549

DOI

23
Zhang X, Tan S. Unitary representations for the Schrödinger-Virasoro Lie algebra. J Algebra Appl, 2013, 12: 1250132

DOI

Outlines

/