Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras
Haibo CHEN, Xiansheng DAI, Hengyun YANG
Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras
We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras . Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv are triangular coboundary.
Lie bialgebra / Yang-Baxter equation / generalized loop Schrödinger-Virasoro algebra
[1] |
Chen H, Fan G, Han J, Su Y. Structures of generalized loop Schrödinger-Virasoro algebras. Mediterr J Math, 2018, 15: 125
CrossRef
Google scholar
|
[2] |
Chen H, Han J, Su Y, Xu Y. Loop Schrödinger-Virasoro Lie conformal algebra. Internat J Math, 2016, 6: 1650057
CrossRef
Google scholar
|
[3] |
Drinfeld V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Sov Math Dokl, 1983, 28: 667–671
|
[4] |
Drinfeld V G. Quantum groups. In: Proceedings of the International Congress of Mathematicians, 1986, Berkeley, California, USA, Vol 1. Providence: Amer Math Soc, 1987, 798–820
|
[5] |
Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Math (N S), 1996, 2: 1–41
CrossRef
Google scholar
|
[6] |
Fa H, Li J, Zheng Y. Lie bialgebra structures on the deformative Schrödinger-Virasoro algebras. J Math Phys, 2015, 56: 111706
CrossRef
Google scholar
|
[7] |
Han J, Li J, Su Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J Math Phys, 2009, 50: 083504
CrossRef
Google scholar
|
[8] |
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023–1029
CrossRef
Google scholar
|
[9] |
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
CrossRef
Google scholar
|
[10] |
Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48
CrossRef
Google scholar
|
[11] |
Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151: 67–88
CrossRef
Google scholar
|
[12] |
Song G, Su Y. Lie bialgebras of generalized Witt type. Sci China Ser A, 2006, 49: 533–544
CrossRef
Google scholar
|
[13] |
Song G, Su Y. Dual Lie bialgebras of Witt and Virasoro types. Sci China Math, 2013, 43: 1093–1102
CrossRef
Google scholar
|
[14] |
Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87: 301–312
CrossRef
Google scholar
|
[15] |
Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322: 1379–1394
CrossRef
Google scholar
|
[16] |
Wang W, Li J, Xin B. Central extensions and derivations of generalized Schrödinger-Virasoro algebra. Algebra Colloq, 2012, 19: 735–744
CrossRef
Google scholar
|
[17] |
Weibel C A. An Introduction to Homological Algebra. Cambridge Stud Adv Math. Cambridge: Cambridge Univ Press, 1994
CrossRef
Google scholar
|
[18] |
Wu H, Wang S, Yue X. Structures of generalized loop Virasoro algebras. Comm Algebra, 2014, 42: 1545–1558
CrossRef
Google scholar
|
[19] |
Wu H, Wang S. Yue X. Lie bialgebras of generalized loop Virasoro algebras. Chin Ann Math Ser B, 2015, 36(3): 437–446
CrossRef
Google scholar
|
[20] |
Wu Y, Song G, Su Y. Lie bialgebras of generalized Virasoro-like type. Acta Math Sin (Engl Ser), 2006, 22: 1915–1922
CrossRef
Google scholar
|
[21] |
Yang H, Su Y. Lie super-bialgebra structures on generalized super-virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225–239
CrossRef
Google scholar
|
[22] |
Yue X, Su Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm Algebra, 2008, 36: 1537–1549
CrossRef
Google scholar
|
[23] |
Zhang X, Tan S. Unitary representations for the Schrödinger-Virasoro Lie algebra. J Algebra Appl, 2013, 12: 1250132
CrossRef
Google scholar
|
/
〈 | 〉 |