RESEARCH ARTICLE

Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor

  • Yannan CHEN 1 ,
  • Shenglong HU 2 ,
  • Liqun QI , 3 ,
  • Wennan ZOU 4
Expand
  • 1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • 2. Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
  • 4. Institute for Advanced Study, Nanchang University, Nanchang 330031, China

Received date: 20 Sep 2018

Accepted date: 14 Jan 2019

Published date: 22 Mar 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless tensor has four invariants with degrees two, four, six, and ten, respectively. In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor, and there is no syzygy relation among the four invariants of that basis, i.e., these four invariants are algebraically independent.

Cite this article

Yannan CHEN , Shenglong HU , Liqun QI , Wennan ZOU . Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor[J]. Frontiers of Mathematics in China, 2019 , 14(1) : 1 -16 . DOI: 10.1007/s11464-019-0748-x

1
Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton Univ Press, 2008

DOI

2
Bump D. Algebraic Geometry. Singapore: World Scientic, 1998

DOI

3
Chen Y, Qi L, Virga E G. Octupolar tensors for liquid crystals. J Phys A, 2018, 51: 025206

DOI

4
Chen Z, Liu J, Qi L, Zheng Q S, Zou W N. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. J Math Phys, 2018, 59: 081703

DOI

5
Gaeta G, Virga E G. Octupolar order in three dimensions. Eur Phys J E, 2016, 39: 113

DOI

6
Hall B C. Lie Groups, Lie Algebras, and Representations. New York: Springer-Verlag, 2003

DOI

7
Liu J, Ding W, Qi L, Zou W. Isotropic polynomial invariants of the Hall tensor. Appl Math Mech, 2018, 39: 1845–1856

8
Olive M. Géométrie des espaces de tenseurs-Une approche effective appliquée à la mécanique des milieux continus. Doctoral Dissertation, Aix Marseille université, 2014

9
Olive M, Auray N. Isotropic invariants of completely symmetric third-order tensor. J Math Phys, 2014, 55: 092901

DOI

10
Olive M, Kolev B, Auray N. A minimal integrity basis for the elasticity tensor. Arch Ration Mech Anal, 2017, 226: 1–31

11
Olver P J. Classical Invariant Theory. Cambridge: Cambridge Univ Press, 1999

DOI

12
Pennisi S, Trovato M. On the irreducibility of Professor G. F. Smith's representations for isotropic functions. Internat J Engrg Sci, 1987, 25: 1059–1065

13
Qi L, Chen H, Chen Y. Tensor Eigenvalues and Their Applications. New York: Springer, 2018

DOI

14
Shafarevich I R. Basic Algebraic Geometry. Berlin: Springer-Verlag, 1977

15
Shioda T. On the graded ring of invariants of binary octavics. Amer J Math, 1967, 89: 1022–1046

16
Smith G F, Bao G. Isotropic invariants of traceless symmetric tensors of orders three and four. Internat J Engrg Sci, 1997, 35: 1457–1462

17
Spencer A J M. Theory of invariants. In: Eringen A C, eds. Continuum Physics, Vol 1. New York: Academic Press, 1971, 239{353

DOI

18
Vinberg E B. A Course in Algebra. Grad Stud Math, Vol 56. Providence: Amer Math Soc, 2003

19
Weyl H. The Classical Groups. Princeton: Princeton Univ Press, 1939

Outlines

/