RESEARCH ARTICLE

Exponential sums involving automorphic forms for GL(3) over arithmetic progressions

  • Xiaoguang HE
Expand
  • School of Mathematics, Shandong University, Jinan 250100, China

Received date: 13 Aug 2018

Accepted date: 22 Sep 2018

Published date: 02 Jan 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let f be a Hecke-Maass cusp form for SL(3; ) with Fourier coefficients Af(m; n); and let ϕ (x) be a C -function supported on [1; 2] with derivatives bounded by ϕ (j)(x)j 1. We prove an asymptotic formula for the nonlinear exponential sum Σnlmod q Af(m,n )φ(n/X)e(3 (kn))1/3/q, where e(z)=e2πiz and k +.

Cite this article

Xiaoguang HE . Exponential sums involving automorphic forms for GL(3) over arithmetic progressions[J]. Frontiers of Mathematics in China, 2018 , 13(6) : 1355 -1368 . DOI: 10.1007/s11464-018-0732-x

1
Goldfeld D. Automorphic forms and L-functions for the group GL(n;ℝ): Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006

2
Goldfeld D, Li X Q. Voronoi formulas on GL(n): Int Math Res Not IMRN, 2006, Art ID: 86295 (25pp)

3
Goldfeld D, Li X Q. The Voronoi formula for GL(n;ℝ): Int Math Res Not IMRN, 2008, (9): rnm144 (39pp)

4
Iwaniec H, Luo W Z, Sarnak P. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55–131

5
Kaczorowski J, Perelli A. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315–341

6
Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2: J Amer Math Soc, 2003, 16: 139–183

7
Li X Q. The central value of the Rankin-Selberg L-functions. Geom Funct Anal, 2009, 18(5): 1660–1695

8
Miller S D, Schmid W.Automorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math (2), 2006, 164(2): 423–488

9
Ren X M, Ye Y B. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463–2472

10
Ren X M, Ye Y B.Asymptotic Voronoi's summation formulas and their duality for SL3( ℤ): In: Kanemitsu S, Li H-Z, Liu J-Y, eds. Number Theory: Arithmetic in Shangri-La. Proceedings of the 6th China-Japan Seminar. Series on Number Theory and Its Applications, Vol 8. Singapore: World Scientific, 2013, 213–236

11
Ren X M, Ye Y B.Resonance of automorphic forms for GL(3): Trans Amer Math Soc, 2015, 367(3): 2137–2157

12
Sarnak P.Notes on the generalized Ramanujan conjectures. In: Arthur J, Ellwood D, Kottwitz R, eds. Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math Proc, Vol 4. Providence: Amer Math Soc, 2005, 659–685

13
Sun Q F, Wu Y Y. Exponential sums involving Maass forms. Front Math China, 2014, 9(6): 1349–1366

14
Yan X F. On some exponential sums involving Maass forms over arithmetic progressions. J Number Theory, 2016, 160: 44–59

Outlines

/