Exponential sums involving automorphic forms for GL(3) over arithmetic progressions

Xiaoguang HE

Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1355 -1368.

PDF (322KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1355 -1368. DOI: 10.1007/s11464-018-0732-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Exponential sums involving automorphic forms for GL(3) over arithmetic progressions

Author information +
History +
PDF (322KB)

Abstract

Let f be a Hecke-Maass cusp form for SL(3; ) with Fourier coefficients Af(m; n); and let ϕ (x) be a C -function supported on [1; 2] with derivatives bounded by ϕ (j)(x)j 1. We prove an asymptotic formula for the nonlinear exponential sum Σnlmod q Af(m,n )φ(n/X)e(3 (kn))1/3/q, where e(z)=e2πiz and k +.

Keywords

Automorphic forms for GL(3) / exponential sum, arithmetic progression

Cite this article

Download citation ▾
Xiaoguang HE. Exponential sums involving automorphic forms for GL(3) over arithmetic progressions. Front. Math. China, 2018, 13(6): 1355-1368 DOI:10.1007/s11464-018-0732-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goldfeld D. Automorphic forms and L-functions for the group GL(n;): Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006

[2]

Goldfeld D, Li X Q. Voronoi formulas on GL(n): Int Math Res Not IMRN, 2006, Art ID: 86295 (25pp)

[3]

Goldfeld D, Li X Q. The Voronoi formula for GL(n;): Int Math Res Not IMRN, 2008, (9): rnm144 (39pp)

[4]

Iwaniec H, Luo W Z, Sarnak P. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55–131

[5]

Kaczorowski J, Perelli A. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315–341

[6]

Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2: J Amer Math Soc, 2003, 16: 139–183

[7]

Li X Q. The central value of the Rankin-Selberg L-functions. Geom Funct Anal, 2009, 18(5): 1660–1695

[8]

Miller S D, Schmid W.Automorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math (2), 2006, 164(2): 423–488

[9]

Ren X M, Ye Y B. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463–2472

[10]

Ren X M, Ye Y B.Asymptotic Voronoi's summation formulas and their duality for SL3(): In: Kanemitsu S, Li H-Z, Liu J-Y, eds. Number Theory: Arithmetic in Shangri-La. Proceedings of the 6th China-Japan Seminar. Series on Number Theory and Its Applications, Vol 8. Singapore: World Scientific, 2013, 213–236

[11]

Ren X M, Ye Y B.Resonance of automorphic forms for GL(3): Trans Amer Math Soc, 2015, 367(3): 2137–2157

[12]

Sarnak P.Notes on the generalized Ramanujan conjectures. In: Arthur J, Ellwood D, Kottwitz R, eds. Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math Proc, Vol 4. Providence: Amer Math Soc, 2005, 659–685

[13]

Sun Q F, Wu Y Y. Exponential sums involving Maass forms. Front Math China, 2014, 9(6): 1349–1366

[14]

Yan X F. On some exponential sums involving Maass forms over arithmetic progressions. J Number Theory, 2016, 160: 44–59

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (322KB)

833

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/