PDF
(322KB)
Abstract
Let f be a Hecke-Maass cusp form for SL(3;) with Fourier coefficients Af(m; n); and let (x) be a -function supported on [1; 2] with derivatives bounded by 1. We prove an asymptotic formula for the nonlinear exponential sum , where and
Keywords
Automorphic forms for GL(3)
/
exponential sum, arithmetic progression
Cite this article
Download citation ▾
Xiaoguang HE.
Exponential sums involving automorphic forms for GL(3) over arithmetic progressions.
Front. Math. China, 2018, 13(6): 1355-1368 DOI:10.1007/s11464-018-0732-x
| [1] |
Goldfeld D. Automorphic forms and L-functions for the group GL(n;ℝ): Cambridge Stud Adv Math, Vol 99. Cambridge: Cambridge Univ Press, 2006
|
| [2] |
Goldfeld D, Li X Q. Voronoi formulas on GL(n): Int Math Res Not IMRN, 2006, Art ID: 86295 (25pp)
|
| [3] |
Goldfeld D, Li X Q. The Voronoi formula for GL(n;ℝ): Int Math Res Not IMRN, 2008, (9): rnm144 (39pp)
|
| [4] |
Iwaniec H, Luo W Z, Sarnak P. Low lying zeros of families of L-functions. Inst Hautes Études Sci Publ Math, 2000, 91: 55–131
|
| [5] |
Kaczorowski J, Perelli A. On the structure of the Selberg class VI: non-linear twists. Acta Arith, 2005, 116: 315–341
|
| [6] |
Kim H. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2: J Amer Math Soc, 2003, 16: 139–183
|
| [7] |
Li X Q. The central value of the Rankin-Selberg L-functions. Geom Funct Anal, 2009, 18(5): 1660–1695
|
| [8] |
Miller S D, Schmid W.Automorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math (2), 2006, 164(2): 423–488
|
| [9] |
Ren X M, Ye Y B. Resonance between automorphic forms and exponential functions. Sci China Math, 2010, 53: 2463–2472
|
| [10] |
Ren X M, Ye Y B.Asymptotic Voronoi's summation formulas and their duality for SL3( ℤ): In: Kanemitsu S, Li H-Z, Liu J-Y, eds. Number Theory: Arithmetic in Shangri-La. Proceedings of the 6th China-Japan Seminar. Series on Number Theory and Its Applications, Vol 8. Singapore: World Scientific, 2013, 213–236
|
| [11] |
Ren X M, Ye Y B.Resonance of automorphic forms for GL(3): Trans Amer Math Soc, 2015, 367(3): 2137–2157
|
| [12] |
Sarnak P.Notes on the generalized Ramanujan conjectures. In: Arthur J, Ellwood D, Kottwitz R, eds. Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math Proc, Vol 4. Providence: Amer Math Soc, 2005, 659–685
|
| [13] |
Sun Q F, Wu Y Y. Exponential sums involving Maass forms. Front Math China, 2014, 9(6): 1349–1366
|
| [14] |
Yan X F. On some exponential sums involving Maass forms over arithmetic progressions. J Number Theory, 2016, 160: 44–59
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature