RESEARCH ARTICLE

Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure

  • Qiuhong WANG ,
  • Yun ZHAO
Expand
  • School of Mathematical Sciences, Soochow University, Suzhou 215006, China

Received date: 09 May 2017

Accepted date: 25 Jul 2018

Published date: 29 Oct 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let {Si}i=1l be an iterated function system (IFS) on d with an attractor K. Let (Σ, σ) denote the one-sided full shift over the finite alphabet {1, 2, . . . , l}, and let π: Σ → K be the coding map. Given an asymptotically (sub)-additive sequence of continuous functions F={fn}n1, we define the asymptotically additive projection pressure Pπ(F) and show the variational principle for Pπ(F) under certain affine IFS. We also obtain variational principle for the asymptotically sub-additive projection pressure if the IFS satisfies asymptotically weak separation condition (AWSC). Furthermore, when the IFS satisfies AWSC, we investigate the zero temperature limits of the asymptotically sub-additive projection pressure Pπ(βF) with positive parameter β.

Cite this article

Qiuhong WANG , Yun ZHAO . Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure[J]. Frontiers of Mathematics in China, 2018 , 13(5) : 1099 -1120 . DOI: 10.1007/s11464-018-0720-1

1
Ban J, Cao Y, Hu H. The dimensions of a non-conformal repeller and an average conformal repeller. Trans Amer Math Soc, 2010, 362: 727–751

DOI

2
Baraviera A, Leplaideur R, Lopes A. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra. 29◦ Coloquio Brasileiro e Matematica. Rio de Janeiro: IMPA, 2013

3
Barreira L. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dynam Systems, 1996, 16: 871–927

DOI

4
Barreira L. Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin Dyn Syst, 2006, 16: 279–305

DOI

5
Bowen R. Topological entropy for noncompact sets. Trans Amer Math Soc, 1973, 184: 125–136

DOI

6
Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math, Vol 470. Berlin: Springer-Verlag, 1975

DOI

7
Bowen R. Hausdorff dimension of quasicircles. Inst Hautes Études Sci Publ Math, 1979, 50: 11–25

DOI

8
Cao Y, Feng D, Huang W. The thermodynamic formalism for sub-additive potentials. Discrete Contin Dyn Syst, 2008, 20: 639–657

9
Catsigeras E, Zhao Y. Observable optimal state points of sub-additive potentials. Discrete Contin Dyn Syst, 2013, 33(4): 1375–1388

DOI

10
Chen B, Ding B, Cao Y. The local variational principle of topological pressure for subadditive potentials. Nonlinear Anal, 2010, 73: 3525–3536

DOI

11
Chung N. Topological pressure and the variational principle for actions of sofic groups. Ergodic Theory Dynam Systems, 2013, 33(5): 1363–1390

DOI

12
Dooley A, Zhang G. Local Entropy Theory of a Random Dynamical System. Mem Amer Math Soc, Vol 233, No 1099. Providence: Amer Math Soc, 2015

13
Downarowicz T, Zhang G. Modeling potential as fiber entropy and pressure as entropy. Ergodic Theory Dynam Systems, 2015, 35(4): 1165–1186

DOI

14
Falconer K. A subadditive thermodynamic formalism for mixing repellers. J Phys A, 1988, 21: 737–742

DOI

15
Feng D. The variational principle for products of non-negative matrices. Nonlinearity, 2004, 17: 447–457

DOI

16
Feng D, Hu H. Dimension theory of iterated function systems. Comm Pure Appl Math, 2009, 62: 1435–1500

DOI

17
Feng D, Huang W. Lyapunov spectrum of asymptotically sub-additive potentials. Comm Math Phys, 2010, 297: 1–43

DOI

18
Huang W, Ye X,Zhang G. Local entropy theory for a countable discrete amenable group action. J Funct Anal, 2011, 261(4): 1028–1082

DOI

19
Huang W, Yi Y. A local variational principle of pressure and its applications to equilibrium states. Israel J Math, 2007, 161: 29–74

DOI

20
Keller G. Equilibrium States in Ergodic Theory. London Math Soc Stud Texts, Vol 42. Cambridge: Cambridge Univ Press, 1998

DOI

21
Kerr D, Li H. Entropy and the variational principle for actions of sofic groups. Invent Math, 2011, 186(3): 501–558

DOI

22
Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883–909

DOI

23
Ma X, Chen E. Variational principles for relative local pressure with subadditive potentials. J Math Phys, 2013, 54(3): 465–478

DOI

24
Manning A, McCluskey H. Hausdorff dimension for horseshoes. Ergodic Theory Dynam Systems, 1983, 3: 251–260

25
Mummert A. The thermodynamic formalism for almost-additive sequences. Discrete Contin Dyn Syst, 2006, 16: 435–454

DOI

26
Ollagnier J M. Ergodic Theory and Statistical Mechanics. Lecture Notes in Math, Vol 1115. Berlin: Springer, 1985

DOI

27
Ollagnier J M, Pinchon D. The variational principle. StudiaMath, 1982, 72(2): 151–159

DOI

28
Pein Y, Pitskel’ B S. Topological pressure and the variational principle for noncompact sets. Funct Anal Appl, 1984, 18: 307–318

DOI

29
Pesin Ya B. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. Chicago: Univ of Chicago Press, 1997

DOI

30
Ruelle D. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2: 99–107

DOI

31
Stepin A M, Tagi-Zade A T. Variational characterization of topological pressure of the amenable groups of transformations. Dokl Akad Nauk SSSR, 1980, 254(3): 545–549 (in Russian); Sov Math Dokl, 1980, 22(2): 405–409

32
Tang X, Cheng W, Zhao Y. Variational principle for topological pressures on subsets. J Math Anal Appl, 2015, 424: 1272–1285

DOI

33
Tempelman A A. Specific characteristics and variational principle for homogeneous random fields. Z Wahrscheinlichkeit-stheor Verw Geb, 1984, 65(3): 341–365

DOI

34
Tempelman A A. Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects. Math Appl, Vol 78. Dordrecht: Kluwer Academic, 1992

DOI

35
Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982

DOI

36
Wang C, Chen E. Projection pressure and Bowen’s equation for a class of self-similar fractals with overlap structure. Sci China Math, 2012, 55(7): 1387–1394

DOI

37
Wang C, Chen E. The projection pressure for asymptotically weak separated condition and Bowen’s equation. Discrete Dyn Nat Soc, 2012, Art ID 807405 (10pp)

38
Yan K. Sub-additive and asymptotically sub-additive topological pressure for Z d- actions. J Dynam Differential Equations, 2013, 25(3): 653–678

DOI

39
Yan K. Conditional entropy and fiber entropy for amenable group actions. J Differential Equations, 2015, 259(7): 3004–3031

DOI

40
Zhang G. Variational principles of pressure. Discrete Contin Dyn Syst, 2009, 24: 1409–1435

DOI

41
Zhang G. Local variational principle concerning entropy of sofic group action. J Funct Anal, 2012, 262(4): 1954–1985

DOI

42
Zhang Y. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergodic Theory Dynam Systems, 1997, 17(3): 739–756

DOI

43
Zhao Y, Cheng W. Variational principle for conditional pressure with subadditive potential. Open Syst Inf Dyn, 2011, 18(4): 389–404

DOI

44
Zhao Y, ChengW. Coset pressure with sub-additive potentials. Stoch Dyn, 2014, 14(1): 1350012 (15pp)

45
Zhao Y, Zhang L, Cao Y. The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials. Nonlinear Anal, 2011, 74: 5015–5022

DOI

Outlines

/