RESEARCH ARTICLE

Finite 2-groups whose length of chain of nonnormal subgroups is at most 2

  • Qiangwei SONG ,
  • Qinhai ZHANG
Expand
  • Department of Mathematics, Shanxi Normal University, Linfen 041004, China

Received date: 05 Jun 2018

Accepted date: 23 Jul 2018

Published date: 29 Oct 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Cite this article

Qiangwei SONG , Qinhai ZHANG . Finite 2-groups whose length of chain of nonnormal subgroups is at most 2[J]. Frontiers of Mathematics in China, 2018 , 13(5) : 1075 -1097 . DOI: 10.1007/s11464-018-0719-7

1
An L J. Finite p-groups whose nonnormal subgroups have few orders. Front Math China, 2018, 13(4): 763–777

DOI

2
An L J, Li L L, Qu H P, Zhang Q H. Finite p-groups with a minimal nonabelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753

DOI

3
An L J, Zhang Q H. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–45

DOI

4
Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008

5
Besche H U, Eick B, O’Brien E A. A millennium project: constructing small groups. Internat J Algebra Comput, 2002, 12: 623–644

DOI

6
Bosma W, Cannon J, Playoust C. The Magma algebra system I: The user language. J Symbolic Comput, 1997, 24: 235–265

DOI

7
Brandl R. Groups with few nonnormal subgroups. Comm Algebra, 1995, 23(6): 2091–2098

DOI

8
Brandl R. Conjugacy classes of nonnormal subgroups of finite p-groups. Israel J Math, 2013, 195(1): 473–479

DOI

9
Cappitt D. Generalized Dedekind groups. J Algebra, 1971, 17: 310–316

DOI

10
Dedekind R. Über Gruppen, deren samtliche Teiler Normalteiler sind. Math Ann, 1897, 48: 548–561

DOI

11
Fernández-Alcober G A, Legarreta L. The finite p-groups with p conjugacy classes of nonnormal subgroups. Israel J Math, 2010, 180(1): 189–192

DOI

12
Foguel T. Conjugate-permutable subgroups. J Algebra, 1997, 191: 235–239

DOI

13
Gheorghe P. On the structure of quasi-Hamiltonian groups. Acad Repub Pop Române Bul Şti A, 1949, 1: 973–979

14
Kappe L-C, Reboli D M. On the structure of generalized Hamiltonian groups. Arch Math (Basel), 2000, 75(5): 328–337

DOI

15
Li L L, Qu H P. The number of conjugacy classes of nonnormal subgroups of finite p-groups. J Algebra, 2016, 466: 44–62

DOI

16
Li L L, Qu H P, Chen G Y. Central extension of minimal nonabelian p-groups (I). Acta Math Sinica (Chin Ser), 2010, 53(4): 675–684

17
Ormerod E A. Finite p-group in which every cyclic subgroup is 2-subnormal. Glasg Math J, 2002, 44: 443–453

DOI

18
Parmeggiani G. On finite p-groups of odd order with many subgroup 2-subnormal. Comm Algebra, 1996, 24: 2707–2719

DOI

19
9. Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370

DOI

20
Qu H P. A characterization of finite generalized Dedekind groups. Acta Math Hungar, 2014, 143(2): 269–273

DOI

21
Rédei L. Das “schiefe Product” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören. Comment Math Helv, 1947, 20: 225–264

22
Song Q W. Finite p-groups whose length of chain of nonnormal subgroups is at most 2 (in preparation)

23
Wang L F, Qu H P. Finite groups in which the normal closures of nonnormal subgroups have the same order. J Algebra Appl, 2016, 15(6): 1650125 (15pp)

24
Xu M Y, An L J, Zhang Q H. Finite p-groups all of whose nonabelian proper subgroups are generated by two elements. J Algebra, 2008, 319(9): 3603–3620

DOI

25
Zhang J Q. Finite groups all of whose nonnormal subgroups possess the same order. J Algebra Appl, 2012, 11(3): 1250053 (7pp)

26
Zhang L H, Zhang J Q. Finite p-groups all of whose nonnormal abelian subgroups are cyclic. J Algebra Appl, 2013, 12(8): 1350052 (9pp)

27
Zhang Q H, Guo X Q, Qu H P, Xu M Y. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178

DOI

28
Zhang Q H, Li X X, Su M J. Finite p-groups whose nonnormal subgroups have orders at most p3. Front Math China, 2014, 9(5): 1169–1194

DOI

29
Zhang Q H, Su M J. Finite 2-groups whose nonnormal subgroups have orders at most 23. Front Math China, 2012, 7(5): 971–1003

DOI

30
Zhang Q H, Zhao L B, Li M M, Shen Y Q. Finite p-groups all of whose subgroups of index p3are abelian. Commun Math Stat, 2015, 3(1): 69–162

DOI

Outlines

/