Finite 2-groups whose length of chain of nonnormal subgroups is at most 2

Qiangwei SONG , Qinhai ZHANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1075 -1097.

PDF (219KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1075 -1097. DOI: 10.1007/s11464-018-0719-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite 2-groups whose length of chain of nonnormal subgroups is at most 2

Author information +
History +
PDF (219KB)

Keywords

Finite p-groups / chain of nonnormal subgroups

Cite this article

Download citation ▾
Qiangwei SONG, Qinhai ZHANG. Finite 2-groups whose length of chain of nonnormal subgroups is at most 2. Front. Math. China, 2018, 13(5): 1075-1097 DOI:10.1007/s11464-018-0719-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An L J. Finite p-groups whose nonnormal subgroups have few orders. Front Math China, 2018, 13(4): 763–777

[2]

An L J, Li L L, Qu H P, Zhang Q H. Finite p-groups with a minimal nonabelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753

[3]

An L J, Zhang Q H. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–45

[4]

Berkovich Y. Groups of Prime Power Order, Vol 1. Berlin: Walter de Gruyter, 2008

[5]

Besche H U, Eick B, O’Brien E A. A millennium project: constructing small groups. Internat J Algebra Comput, 2002, 12: 623–644

[6]

Bosma W, Cannon J, Playoust C. The Magma algebra system I: The user language. J Symbolic Comput, 1997, 24: 235–265

[7]

Brandl R. Groups with few nonnormal subgroups. Comm Algebra, 1995, 23(6): 2091–2098

[8]

Brandl R. Conjugacy classes of nonnormal subgroups of finite p-groups. Israel J Math, 2013, 195(1): 473–479

[9]

Cappitt D. Generalized Dedekind groups. J Algebra, 1971, 17: 310–316

[10]

Dedekind R. Über Gruppen, deren samtliche Teiler Normalteiler sind. Math Ann, 1897, 48: 548–561

[11]

Fernández-Alcober G A, Legarreta L. The finite p-groups with p conjugacy classes of nonnormal subgroups. Israel J Math, 2010, 180(1): 189–192

[12]

Foguel T. Conjugate-permutable subgroups. J Algebra, 1997, 191: 235–239

[13]

Gheorghe P. On the structure of quasi-Hamiltonian groups. Acad Repub Pop Române Bul Şti A, 1949, 1: 973–979

[14]

Kappe L-C, Reboli D M. On the structure of generalized Hamiltonian groups. Arch Math (Basel), 2000, 75(5): 328–337

[15]

Li L L, Qu H P. The number of conjugacy classes of nonnormal subgroups of finite p-groups. J Algebra, 2016, 466: 44–62

[16]

Li L L, Qu H P, Chen G Y. Central extension of minimal nonabelian p-groups (I). Acta Math Sinica (Chin Ser), 2010, 53(4): 675–684

[17]

Ormerod E A. Finite p-group in which every cyclic subgroup is 2-subnormal. Glasg Math J, 2002, 44: 443–453

[18]

Parmeggiani G. On finite p-groups of odd order with many subgroup 2-subnormal. Comm Algebra, 1996, 24: 2707–2719

[19]

9. Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370

[20]

Qu H P. A characterization of finite generalized Dedekind groups. Acta Math Hungar, 2014, 143(2): 269–273

[21]

Rédei L. Das “schiefe Product” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören. Comment Math Helv, 1947, 20: 225–264

[22]

Song Q W. Finite p-groups whose length of chain of nonnormal subgroups is at most 2 (in preparation)

[23]

Wang L F, Qu H P. Finite groups in which the normal closures of nonnormal subgroups have the same order. J Algebra Appl, 2016, 15(6): 1650125 (15pp)

[24]

Xu M Y, An L J, Zhang Q H. Finite p-groups all of whose nonabelian proper subgroups are generated by two elements. J Algebra, 2008, 319(9): 3603–3620

[25]

Zhang J Q. Finite groups all of whose nonnormal subgroups possess the same order. J Algebra Appl, 2012, 11(3): 1250053 (7pp)

[26]

Zhang L H, Zhang J Q. Finite p-groups all of whose nonnormal abelian subgroups are cyclic. J Algebra Appl, 2013, 12(8): 1350052 (9pp)

[27]

Zhang Q H, Guo X Q, Qu H P, Xu M Y. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178

[28]

Zhang Q H, Li X X, Su M J. Finite p-groups whose nonnormal subgroups have orders at most p3. Front Math China, 2014, 9(5): 1169–1194

[29]

Zhang Q H, Su M J. Finite 2-groups whose nonnormal subgroups have orders at most 23. Front Math China, 2012, 7(5): 971–1003

[30]

Zhang Q H, Zhao L B, Li M M, Shen Y Q. Finite p-groups all of whose subgroups of index p3are abelian. Commun Math Stat, 2015, 3(1): 69–162

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (219KB)

498

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/