RESEARCH ARTICLE

Scaling limit theorem for transient random walk in random environment

  • Wenming HONG 1 ,
  • Hui YANG , 2
Expand
  • 1. School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China
  • 2. College of Science, Minzu University of China, Beijing 100081, China

Received date: 09 Jun 2016

Accepted date: 11 Aug 2018

Published date: 29 Oct 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We construct a sequence of transient random walks in random environments and prove that by proper scaling, it converges to a diffusion process with drifted Brownian potential. To this end, we prove a counterpart of convergence for transient random walk in non-random environment, which is interesting itself.

Cite this article

Wenming HONG , Hui YANG . Scaling limit theorem for transient random walk in random environment[J]. Frontiers of Mathematics in China, 2018 , 13(5) : 1033 -1044 . DOI: 10.1007/s11464-018-0723-y

1
Borisov I S, Nikitina N N. The distribution of the number of crossings of a strip by paths of the simplest random walks and of a Wiener process with drift. Theory Probab Appl, 2012, 56: 126–132

DOI

2
Brox T. A one-dimensional diffusion process in a Wiener medium. Ann Probab, 1986, 14: 1206–1218

DOI

3
Comets F, Gantert N, Zeitouni O. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab Theory Related Fields, 2000, 118: 65–114

DOI

4
Dembo A, Peres Y, Zeitouni O. Tail estimates for one-dimensional random walk in random environment. Comm Math Phys, 1996, 181: 667–683

DOI

5
Durrett R. Probability: Theory and Examples. 3rd ed. Belmont: Brooks/Cole-Thomson Learning, 2004

6
Ethier S N, Kurtz T G. Markov Processes: Characterization and Convergence. 2nd ed. Wiley Ser Probab Stat. Hoboken: Wiley, 2005

7
Greven A, den Hollander F. Large deviations for a random walk in random environment. Ann Probab, 1994, 22: 1381–1428

DOI

8
Hu Y, Shi Z, Yor M. Rates of convergence of diffusions with drifted Brownian potentials. Trans Amer Math Soc, 1999, 351: 3915–3934

DOI

9
Kawazu K, Tanaka H. A diffusion process in a Brownian environment with drift. J Math Soc Japan, 1997, 49: 189–211

DOI

10
Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in random environment. Compos Math, 1975, 30: 145–168

11
Kurtz T G. Approximation of Population Processes. Philadelphia: SIAM, 1981

DOI

12
Schumacher S. Diffusions with random coefficients. Contemp Math, 1985, 41: 351–356

DOI

13
Seignourel P. Discrete schemes for processes in random media. Probab Theory Related Fields, 2000, 118: 293–322

DOI

14
Sinai Y G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1982, 27: 256–268

DOI

15
Stroock DW, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer, 2009

16
Taleb M. Large deviations for a Brownian motion in a drifted Brownian potential. Ann Probab, 2001, 29: 1173–1204

DOI

17
Tanaka H. Diffusion processes in random environments. In: Proceedings of the International Congress of Mathematicians, Vol 2. Basel: Birkhüuser, 1995, 1047–1054

DOI

18
Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics. Lecture Notes in Math, Vol 1837. Berlin: Springer, 2004, 190–312

DOI

Outlines

/