Scaling limit theorem for transient random walk in random environment

Wenming HONG, Hui YANG

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1033-1044. DOI: 10.1007/s11464-018-0723-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Scaling limit theorem for transient random walk in random environment

Author information +
History +

Abstract

We construct a sequence of transient random walks in random environments and prove that by proper scaling, it converges to a diffusion process with drifted Brownian potential. To this end, we prove a counterpart of convergence for transient random walk in non-random environment, which is interesting itself.

Keywords

Random walk / random environment / diffusion process / Brownian motion with drift

Cite this article

Download citation ▾
Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment. Front. Math. China, 2018, 13(5): 1033‒1044 https://doi.org/10.1007/s11464-018-0723-y

References

[1]
Borisov I S, Nikitina N N. The distribution of the number of crossings of a strip by paths of the simplest random walks and of a Wiener process with drift. Theory Probab Appl, 2012, 56: 126–132
CrossRef Google scholar
[2]
Brox T. A one-dimensional diffusion process in a Wiener medium. Ann Probab, 1986, 14: 1206–1218
CrossRef Google scholar
[3]
Comets F, Gantert N, Zeitouni O. Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab Theory Related Fields, 2000, 118: 65–114
CrossRef Google scholar
[4]
Dembo A, Peres Y, Zeitouni O. Tail estimates for one-dimensional random walk in random environment. Comm Math Phys, 1996, 181: 667–683
CrossRef Google scholar
[5]
Durrett R. Probability: Theory and Examples. 3rd ed. Belmont: Brooks/Cole-Thomson Learning, 2004
[6]
Ethier S N, Kurtz T G. Markov Processes: Characterization and Convergence. 2nd ed. Wiley Ser Probab Stat. Hoboken: Wiley, 2005
[7]
Greven A, den Hollander F. Large deviations for a random walk in random environment. Ann Probab, 1994, 22: 1381–1428
CrossRef Google scholar
[8]
Hu Y, Shi Z, Yor M. Rates of convergence of diffusions with drifted Brownian potentials. Trans Amer Math Soc, 1999, 351: 3915–3934
CrossRef Google scholar
[9]
Kawazu K, Tanaka H. A diffusion process in a Brownian environment with drift. J Math Soc Japan, 1997, 49: 189–211
CrossRef Google scholar
[10]
Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in random environment. Compos Math, 1975, 30: 145–168
[11]
Kurtz T G. Approximation of Population Processes. Philadelphia: SIAM, 1981
CrossRef Google scholar
[12]
Schumacher S. Diffusions with random coefficients. Contemp Math, 1985, 41: 351–356
CrossRef Google scholar
[13]
Seignourel P. Discrete schemes for processes in random media. Probab Theory Related Fields, 2000, 118: 293–322
CrossRef Google scholar
[14]
Sinai Y G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1982, 27: 256–268
CrossRef Google scholar
[15]
Stroock DW, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer, 2009
[16]
Taleb M. Large deviations for a Brownian motion in a drifted Brownian potential. Ann Probab, 2001, 29: 1173–1204
CrossRef Google scholar
[17]
Tanaka H. Diffusion processes in random environments. In: Proceedings of the International Congress of Mathematicians, Vol 2. Basel: Birkhüuser, 1995, 1047–1054
CrossRef Google scholar
[18]
Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics. Lecture Notes in Math, Vol 1837. Berlin: Springer, 2004, 190–312
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/