RESEARCH ARTICLE

L2( n) boundedness for Calderón commutator with rough variable kernel

  • Yanping CHEN , 1 ,
  • Liwei WANG 1,2
Expand
  • 1. Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
  • 2. School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China

Received date: 16 Jun 2016

Accepted date: 28 Jul 2018

Published date: 29 Oct 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

For bL ip (R n), the Calderón commutator with variable kernel is defined by

[b , T1]f(x)=p.v.R nΩ(x,xy) |x y|n+1( b(x )b(y))f( y)dy.
In this paper, we establish the L2( Rn) boundedness for [b, T1] with Ω( x, z') L (R n) ×Lq ( Sn 1)(q 2(n 1)/n) satisfying certain cancellation conditions. Moreover, the exponent q 2(n 1)/n is optimal. Our main result improves a previous result of Calderón.

Cite this article

Yanping CHEN , Liwei WANG . L2( n) boundedness for Calderón commutator with rough variable kernel[J]. Frontiers of Mathematics in China, 2018 , 13(5) : 1013 -1031 . DOI: 10.1007/s11464-018-0718-8

1
AL-Balushi K, AL-Salman A. Certain Lp bounds for rough singular integrals. J Math Inequal, 2014, 8: 803–822

2
AL-Salman A, Pan Y. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11

DOI

3
Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA, 1965, 53: 1092–1099

DOI

4
Calderón A P. Cauchy integrals on Lipschitz curves and related operators. Proc Natl Acad Sci USA, 1977, 74: 1324–1327

DOI

5
Calderón A P. Commutators, singular integrals on Lipschitz curves and applications. In: Lehto O, ed. Proc Inter Congr Math, Helsinki, 1978, Vol 1. Helsinki: Acad Sci Fennica, 1980, 85–96

6
Calderón A P, Zygmund A. On a problem of Mihlin. Trans Amer Math Soc, 1955, 78: 209–224

DOI

7
Calderón A P, Zygmund A. Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921

DOI

8
Calderón A P, Zygmund A. On singular integrals with variable kernels. Appl Anal, 1978, 7: 221–238

DOI

9
Chen J, Fan D, Ying Y. Certain operators with rough singular kernels. Canad J Math, 2003, 55: 504–532

DOI

10
Chen Y, Ding Y. L2 boundedness for commutator of rough singular integral with variable kernel. Rev Mat Iberoam, 2008, 24: 531–547

DOI

11
Chen Y, Ding Y. Boundedness for commutators of rough hypersingular integrals with variable kernels. Michigan Math J, 2010, 59: 189–210

DOI

12
Chen Y, Ding Y. Lp bounds for the commutators of singular integrals and maximal singular integrals with rough kernels. Trans Amer Math Soc, 2015, 3671585–1608

13
Chen Y, Ding Y. Necessary and sufficient conditions for the bounds of the Calderón type commutator for the Littlewood-Paley operator. Nonlinear Anal, 2016, 130: 279–297

DOI

14
Chiarenza F, Frasca M, Longo P. Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ric Mat, 1991, 40: 149–168

15
Chiarenza F, Frasca M, Longo P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853

16
Christ M, Duoandikoetxea J, Rubio de Francia J. Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations. Duke Math J, 1986, 53: 189–209

DOI

17
Coifman R, Meyer Y. On commutators of singular integrals and bilinear integrals. Trans Amer Math Soc, 1975, 212: 315–331

DOI

18
Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611–635

DOI

19
Cowling M, Mauceri G. Inequalities for some maximal functions I. Trans Amer Math Soc, 1985, 287: 431–455

DOI

20
Duoandikoetxea J. Fourier Analysis. Grad Stud Math, Vol 29. Providence: Amer Math Soc, 2001, 106

21
Duoandikoetxea J, Rubio de Francia J. Maximal and singular integrals via Fourier transform estimates. Invent Math, 1986, 84: 541–561

DOI

22
Di Fazio G, Ragusa M. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J Funct Anal, 1993, 112: 241–256

DOI

23
Ding Y, Lin C C, Shao S. On Marcinkiewicz integral with variable kernels. Indiana Univ Math J, 2004, 53: 805–821

DOI

24
Fefferman C. Recent progress in classical Fourier analysis. In: James R D, ed. Proc Inter Congr Math, Vancouver, 1974, Vol 1. Ottawa: Canadian Math Congr, 1975, 95–118

25
Greco L, Iwaniec T. New inequalities for the Jacobian. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11: 17–35

DOI

26
Han Y, Hofmann S. T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853

DOI

27
Hofmann S. On singular integrals of Calderón-type in ℝn and BMO. Rev Mat Iberoam, 1994, 10: 467–505

DOI

28
Hofmann S. Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials. Duke Math J, 1997, 90: 209–259

DOI

29
Lee M Y, Lin C C, Lin Y C, Yan D. Boundedness of singular integral operators with variable kernels. J Math Anal Appl, 2008, 348: 787–796

DOI

30
Meyer Y, Coifman R. Ondelettes et Opérateurs, Vol III. Paris: Hermann, 1991

31
Muscalu C, Schlag W. Classical and Multilinear Harmonic Analysis, Vol II. Cambridge: Cambridge Univ Press, 2013

32
Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971

Outlines

/