L2( n) boundedness for Calderón commutator with rough variable kernel

Yanping CHEN, Liwei WANG

PDF(210 KB)
PDF(210 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1013-1031. DOI: 10.1007/s11464-018-0718-8
RESEARCH ARTICLE
RESEARCH ARTICLE

L2( n) boundedness for Calderón commutator with rough variable kernel

Author information +
History +

Abstract

For bL ip (R n), the Calderón commutator with variable kernel is defined by

[b , T1]f(x)=p.v.R nΩ(x,xy) |x y|n+1( b(x )b(y))f( y)dy.
In this paper, we establish the L2( Rn) boundedness for [b, T1] with Ω( x, z') L (R n) ×Lq ( Sn 1)(q 2(n 1)/n) satisfying certain cancellation conditions. Moreover, the exponent q 2(n 1)/n is optimal. Our main result improves a previous result of Calderón.

Keywords

Commutator / variable kernel / spherical harmonics function / Fourier transform

Cite this article

Download citation ▾
Yanping CHEN, Liwei WANG. L2( n) boundedness for Calderón commutator with rough variable kernel. Front. Math. China, 2018, 13(5): 1013‒1031 https://doi.org/10.1007/s11464-018-0718-8

References

[1]
AL-Balushi K, AL-Salman A. Certain Lp bounds for rough singular integrals. J Math Inequal, 2014, 8: 803–822
[2]
AL-Salman A, Pan Y. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11
CrossRef Google scholar
[3]
Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA, 1965, 53: 1092–1099
CrossRef Google scholar
[4]
Calderón A P. Cauchy integrals on Lipschitz curves and related operators. Proc Natl Acad Sci USA, 1977, 74: 1324–1327
CrossRef Google scholar
[5]
Calderón A P. Commutators, singular integrals on Lipschitz curves and applications. In: Lehto O, ed. Proc Inter Congr Math, Helsinki, 1978, Vol 1. Helsinki: Acad Sci Fennica, 1980, 85–96
[6]
Calderón A P, Zygmund A. On a problem of Mihlin. Trans Amer Math Soc, 1955, 78: 209–224
CrossRef Google scholar
[7]
Calderón A P, Zygmund A. Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921
CrossRef Google scholar
[8]
Calderón A P, Zygmund A. On singular integrals with variable kernels. Appl Anal, 1978, 7: 221–238
CrossRef Google scholar
[9]
Chen J, Fan D, Ying Y. Certain operators with rough singular kernels. Canad J Math, 2003, 55: 504–532
CrossRef Google scholar
[10]
Chen Y, Ding Y. L2 boundedness for commutator of rough singular integral with variable kernel. Rev Mat Iberoam, 2008, 24: 531–547
CrossRef Google scholar
[11]
Chen Y, Ding Y. Boundedness for commutators of rough hypersingular integrals with variable kernels. Michigan Math J, 2010, 59: 189–210
CrossRef Google scholar
[12]
Chen Y, Ding Y. Lp bounds for the commutators of singular integrals and maximal singular integrals with rough kernels. Trans Amer Math Soc, 2015, 3671585–1608
[13]
Chen Y, Ding Y. Necessary and sufficient conditions for the bounds of the Calderón type commutator for the Littlewood-Paley operator. Nonlinear Anal, 2016, 130: 279–297
CrossRef Google scholar
[14]
Chiarenza F, Frasca M, Longo P. Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ric Mat, 1991, 40: 149–168
[15]
Chiarenza F, Frasca M, Longo P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
[16]
Christ M, Duoandikoetxea J, Rubio de Francia J. Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations. Duke Math J, 1986, 53: 189–209
CrossRef Google scholar
[17]
Coifman R, Meyer Y. On commutators of singular integrals and bilinear integrals. Trans Amer Math Soc, 1975, 212: 315–331
CrossRef Google scholar
[18]
Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611–635
CrossRef Google scholar
[19]
Cowling M, Mauceri G. Inequalities for some maximal functions I. Trans Amer Math Soc, 1985, 287: 431–455
CrossRef Google scholar
[20]
Duoandikoetxea J. Fourier Analysis. Grad Stud Math, Vol 29. Providence: Amer Math Soc, 2001, 106
[21]
Duoandikoetxea J, Rubio de Francia J. Maximal and singular integrals via Fourier transform estimates. Invent Math, 1986, 84: 541–561
CrossRef Google scholar
[22]
Di Fazio G, Ragusa M. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J Funct Anal, 1993, 112: 241–256
CrossRef Google scholar
[23]
Ding Y, Lin C C, Shao S. On Marcinkiewicz integral with variable kernels. Indiana Univ Math J, 2004, 53: 805–821
CrossRef Google scholar
[24]
Fefferman C. Recent progress in classical Fourier analysis. In: James R D, ed. Proc Inter Congr Math, Vancouver, 1974, Vol 1. Ottawa: Canadian Math Congr, 1975, 95–118
[25]
Greco L, Iwaniec T. New inequalities for the Jacobian. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11: 17–35
CrossRef Google scholar
[26]
Han Y, Hofmann S. T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853
CrossRef Google scholar
[27]
Hofmann S. On singular integrals of Calderón-type in ℝn and BMO. Rev Mat Iberoam, 1994, 10: 467–505
CrossRef Google scholar
[28]
Hofmann S. Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials. Duke Math J, 1997, 90: 209–259
CrossRef Google scholar
[29]
Lee M Y, Lin C C, Lin Y C, Yan D. Boundedness of singular integral operators with variable kernels. J Math Anal Appl, 2008, 348: 787–796
CrossRef Google scholar
[30]
Meyer Y, Coifman R. Ondelettes et Opérateurs, Vol III. Paris: Hermann, 1991
[31]
Muscalu C, Schlag W. Classical and Multilinear Harmonic Analysis, Vol II. Cambridge: Cambridge Univ Press, 2013
[32]
Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/