L2(
Yanping CHEN, Liwei WANG
L2(
For , the Calderón commutator with variable kernel is defined by
In this paper, we establish the boundedness for with satisfying certain cancellation conditions. Moreover, the exponent is optimal. Our main result improves a previous result of Calderón.Commutator / variable kernel / spherical harmonics function / Fourier transform
[1] |
AL-Balushi K, AL-Salman A. Certain Lp bounds for rough singular integrals. J Math Inequal, 2014, 8: 803–822
|
[2] |
AL-Salman A, Pan Y. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11
CrossRef
Google scholar
|
[3] |
Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA, 1965, 53: 1092–1099
CrossRef
Google scholar
|
[4] |
Calderón A P. Cauchy integrals on Lipschitz curves and related operators. Proc Natl Acad Sci USA, 1977, 74: 1324–1327
CrossRef
Google scholar
|
[5] |
Calderón A P. Commutators, singular integrals on Lipschitz curves and applications. In: Lehto O, ed. Proc Inter Congr Math, Helsinki, 1978, Vol 1. Helsinki: Acad Sci Fennica, 1980, 85–96
|
[6] |
Calderón A P, Zygmund A. On a problem of Mihlin. Trans Amer Math Soc, 1955, 78: 209–224
CrossRef
Google scholar
|
[7] |
Calderón A P, Zygmund A. Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921
CrossRef
Google scholar
|
[8] |
Calderón A P, Zygmund A. On singular integrals with variable kernels. Appl Anal, 1978, 7: 221–238
CrossRef
Google scholar
|
[9] |
Chen J, Fan D, Ying Y. Certain operators with rough singular kernels. Canad J Math, 2003, 55: 504–532
CrossRef
Google scholar
|
[10] |
Chen Y, Ding Y. L2 boundedness for commutator of rough singular integral with variable kernel. Rev Mat Iberoam, 2008, 24: 531–547
CrossRef
Google scholar
|
[11] |
Chen Y, Ding Y. Boundedness for commutators of rough hypersingular integrals with variable kernels. Michigan Math J, 2010, 59: 189–210
CrossRef
Google scholar
|
[12] |
Chen Y, Ding Y. Lp bounds for the commutators of singular integrals and maximal singular integrals with rough kernels. Trans Amer Math Soc, 2015, 3671585–1608
|
[13] |
Chen Y, Ding Y. Necessary and sufficient conditions for the bounds of the Calderón type commutator for the Littlewood-Paley operator. Nonlinear Anal, 2016, 130: 279–297
CrossRef
Google scholar
|
[14] |
Chiarenza F, Frasca M, Longo P. Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ric Mat, 1991, 40: 149–168
|
[15] |
Chiarenza F, Frasca M, Longo P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
|
[16] |
Christ M, Duoandikoetxea J, Rubio de Francia J. Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations. Duke Math J, 1986, 53: 189–209
CrossRef
Google scholar
|
[17] |
Coifman R, Meyer Y. On commutators of singular integrals and bilinear integrals. Trans Amer Math Soc, 1975, 212: 315–331
CrossRef
Google scholar
|
[18] |
Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611–635
CrossRef
Google scholar
|
[19] |
Cowling M, Mauceri G. Inequalities for some maximal functions I. Trans Amer Math Soc, 1985, 287: 431–455
CrossRef
Google scholar
|
[20] |
Duoandikoetxea J. Fourier Analysis. Grad Stud Math, Vol 29. Providence: Amer Math Soc, 2001, 106
|
[21] |
Duoandikoetxea J, Rubio de Francia J. Maximal and singular integrals via Fourier transform estimates. Invent Math, 1986, 84: 541–561
CrossRef
Google scholar
|
[22] |
Di Fazio G, Ragusa M. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J Funct Anal, 1993, 112: 241–256
CrossRef
Google scholar
|
[23] |
Ding Y, Lin C C, Shao S. On Marcinkiewicz integral with variable kernels. Indiana Univ Math J, 2004, 53: 805–821
CrossRef
Google scholar
|
[24] |
Fefferman C. Recent progress in classical Fourier analysis. In: James R D, ed. Proc Inter Congr Math, Vancouver, 1974, Vol 1. Ottawa: Canadian Math Congr, 1975, 95–118
|
[25] |
Greco L, Iwaniec T. New inequalities for the Jacobian. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11: 17–35
CrossRef
Google scholar
|
[26] |
Han Y, Hofmann S. T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853
CrossRef
Google scholar
|
[27] |
Hofmann S. On singular integrals of Calderón-type in ℝn and BMO. Rev Mat Iberoam, 1994, 10: 467–505
CrossRef
Google scholar
|
[28] |
Hofmann S. Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials. Duke Math J, 1997, 90: 209–259
CrossRef
Google scholar
|
[29] |
Lee M Y, Lin C C, Lin Y C, Yan D. Boundedness of singular integral operators with variable kernels. J Math Anal Appl, 2008, 348: 787–796
CrossRef
Google scholar
|
[30] |
Meyer Y, Coifman R. Ondelettes et Opérateurs, Vol III. Paris: Hermann, 1991
|
[31] |
Muscalu C, Schlag W. Classical and Multilinear Harmonic Analysis, Vol II. Cambridge: Cambridge Univ Press, 2013
|
[32] |
Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971
|
/
〈 | 〉 |