Frontiers of Mathematics in China >
Irreducible -modules of near-group fusion ring K(, 3)
Received date: 10 Dec 2017
Accepted date: 06 Jun 2018
Published date: 14 Aug 2018
Copyright
The near-group rings are an important class of fusion rings in the theory of tensor categories. In this paper, the irreducible -modules over the near-group fusion ring K(, 3) are explicitly classified. It turns out that there are only four inequivalent irreducible -modules of rank 2 and two inequivalent irreducible -modules of rank 4 over K(, 3).
Chengtao YUAN , Ruju ZHAO , Libin LI . Irreducible -modules of near-group fusion ring K(, 3)[J]. Frontiers of Mathematics in China, 2018 , 13(4) : 947 -966 . DOI: 10.1007/s11464-018-0709-9
1 |
Calegari F, Morrison S, Snyder N. Cyclotomic integers, fusion categories, and subfactors. Comm Math Phys, 2011, 303: 845–896
|
2 |
Etingof P, Gelaki S, Nikshych D, Ostrik V. Tensor Categories. Math Surveys Monogr, Vol 205. Providence: Amer Math Soc, 2015
|
3 |
Etingof P, Khovanov M. Representations of tensor categories and Dynkin diagrams. Int Math Res Not IMRN, 1995, 5: 235–247
|
4 |
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann Math, 2005, 162: 581–642
|
5 |
Etingof P, Ostrik V. Finite tensor categories. Mosc Math J, 2004, 4: 627–654
|
6 |
Evans D E, Gannon T. Near-group fusion categories and their doubles. Adv Math, 2014, 255: 586–640
|
7 |
Izumi M. A Cuntz algebra approach to the classification of near-group categories. Proc Centre Math Appl Austral Nat Univ, 2017, 46: 222–343
|
8 |
Larson H K. Pseudo-unitary non-selfdual fusion categories of rank 4. J Algebra, 2014, 415: 184–213
|
9 |
Ostrik V. Module categories, weak Hopf algebras and modular invariants. Transform Groups, 2003, 8: 177–206
|
10 |
Ostrik V. Pivotal fusion categories of rank 3. Mosc Math J, 2015, 15: 373–396
|
11 |
Siehler J. Near-group categories. Algebr Geom Topol, 2003, 3: 719–775
|
12 |
Tambara D, Yamagami S. Tensor categories with fusion rules of self-duality for finite abelian groups. J Algebra, 1998, 209: 692–707
|
/
〈 | 〉 |