Irreducible
Chengtao YUAN, Ruju ZHAO, Libin LI
Irreducible
The near-group rings are an important class of fusion rings in the theory of tensor categories. In this paper, the irreducible -modules over the near-group fusion ring K(, 3) are explicitly classified. It turns out that there are only four inequivalent irreducible -modules of rank 2 and two inequivalent irreducible -modules of rank 4 over K(, 3).
irreducible -module, near group ring, fusion ring
[1] |
Calegari F, Morrison S, Snyder N. Cyclotomic integers, fusion categories, and subfactors. Comm Math Phys, 2011, 303: 845–896
CrossRef
Google scholar
|
[2] |
Etingof P, Gelaki S, Nikshych D, Ostrik V. Tensor Categories. Math Surveys Monogr, Vol 205. Providence: Amer Math Soc, 2015
CrossRef
Google scholar
|
[3] |
Etingof P, Khovanov M. Representations of tensor categories and Dynkin diagrams. Int Math Res Not IMRN, 1995, 5: 235–247
CrossRef
Google scholar
|
[4] |
Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann Math, 2005, 162: 581–642
CrossRef
Google scholar
|
[5] |
Etingof P, Ostrik V. Finite tensor categories. Mosc Math J, 2004, 4: 627–654
|
[6] |
Evans D E, Gannon T. Near-group fusion categories and their doubles. Adv Math, 2014, 255: 586–640
CrossRef
Google scholar
|
[7] |
Izumi M. A Cuntz algebra approach to the classification of near-group categories. Proc Centre Math Appl Austral Nat Univ, 2017, 46: 222–343
|
[8] |
Larson H K. Pseudo-unitary non-selfdual fusion categories of rank 4. J Algebra, 2014, 415: 184–213
CrossRef
Google scholar
|
[9] |
Ostrik V. Module categories, weak Hopf algebras and modular invariants. Transform Groups, 2003, 8: 177–206
CrossRef
Google scholar
|
[10] |
Ostrik V. Pivotal fusion categories of rank 3. Mosc Math J, 2015, 15: 373–396
|
[11] |
Siehler J. Near-group categories. Algebr Geom Topol, 2003, 3: 719–775
CrossRef
Google scholar
|
[12] |
Tambara D, Yamagami S. Tensor categories with fusion rules of self-duality for finite abelian groups. J Algebra, 1998, 209: 692–707
CrossRef
Google scholar
|
/
〈 | 〉 |