RESEARCH ARTICLE

Results of Diophantine approximation by unlike powers of primes

  • Gaiyun GAO ,
  • Zhixin LIU
Expand
  • School of Mathematics, Tianjin University, Tianjin 300350, China

Received date: 08 Nov 2017

Accepted date: 10 Jul 2018

Published date: 14 Aug 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let k be an integer with k6: Suppose that λ1,λ2,...,λ5 be nonzero real numbers not all of the same sign, satisfying that λ1/λ2 is irrational, and suppose that η is a real number. In this paper, for any ε0; we consider the inequality |λ1p1+λ2p22+λ3p33+λ4p44+λ5p55+η|(maxpj)σ(k)+ε has innitely many solutions in prime variables

p1,p2,...,p5,
where σ(k) depends on k: Our result gives an improvement of the recent result. Furthermore, using the similar method in this paper, we can rene some results on Diophantine approximation by unlike powers of primes, and get the related problem.

Cite this article

Gaiyun GAO , Zhixin LIU . Results of Diophantine approximation by unlike powers of primes[J]. Frontiers of Mathematics in China, 2018 , 13(4) : 797 -808 . DOI: 10.1007/s11464-018-0713-0

1
Bourgain J, Demeter C, Guth L. Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three. Ann of Math, 2016, 184: 633–682

DOI

2
Cook R J, Harman G. The values of additive forms at prime arguments. Rocky Mountain J Math, 2006, 36: 1153–1164

DOI

3
Gambini A. Diophantine approximation with one prime, two squares of primes and one k-th power of a prime. arXiv: 1703.02381v6

4
Ge W X, Li W P. One Diophantine inequality with unlike powers of prime variables. J Inequal Appl, 2016, 33: https://doi.org/10.1186/s13660-016-0983-6

DOI

5
Languasco A, Zaccagnini A. A Diophantine problem with a prime and three squares of primes. J Number Theory, 2012, 132: 3016–3028

DOI

6
Liu Z X. Diophantine approximation by unlike powers of primes. Int J Number Theory, 2017, 13: 2445–2452

DOI

7
Liu Z X, Sun H W. Diophantine approximation with one prime and three squares of primes. Ramanujan J, 2013, 20: 327–340

DOI

8
Mu Q W. Diophantine approximation with four squares and one kth power of primes. Ramanujan J, 2016, 39: 481-496

DOI

9
Mu Q W. One Diophantine inequality with unlike powers of prime variables. Int J Number Theory, 2017, 13: 1531–1545

DOI

10
Vaughan R C. Diophantine approximation by prime numbers, II. Proc Lond Math Soc, 1974, 28: 385–401

DOI

11
Wang Y C, Yao W L. Diophantine approximation with one prime and three squares of primes. J Number Theory, 2017, 180: 234–250

DOI

Outlines

/