RESEARCH ARTICLE

Hörmander index in finite-dimensional case

  • Yuting ZHOU 1 ,
  • Li WU 2 ,
  • Chaofeng ZHU , 1
Expand
  • 1. Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
  • 2. Department of Mathematics, Shandong University, Jinan 250100, China

Received date: 14 Dec 2016

Accepted date: 18 Jan 2017

Published date: 11 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We calculate the Hörmander index in the finite-dimensional case. Then we use the result to give some iteration inequalities, and prove almost existence of mean indices for given complete autonomous Hamiltonian system on compact symplectic manifold with symplectic trivial tangent bundle and given autonomous Hamiltonian system on regular compact energy hypersurface of symplectic manifold with symplectic trivial tangent bundle.

Cite this article

Yuting ZHOU , Li WU , Chaofeng ZHU . Hörmander index in finite-dimensional case[J]. Frontiers of Mathematics in China, 2018 , 13(3) : 725 -761 . DOI: 10.1007/s11464-018-0702-3

1
Booss-Bavnbek B, Furutani K. Symplectic functional analysis and spectral invariants. In: Booss-Bavnbek B, Wojciechowski K, eds. Geometric Aspects of Partial Differential Equations. Contemp Math, Vol 242. Providence: Amer Math Soc, 1999, 53–83

DOI

2
Booß-Bavnbek B, Zhu C. The Maslov index in weak symplectic functional analysis. Ann Global Anal Geom, 2013, 44: 283–318

DOI

3
Booß-Bavnbek B, Zhu C. Maslov Index in Symplectic Banach Spaces. Mem Amer Math Soc (to appear), arXiv: 1406.1569v4

DOI

4
de Gosson M. On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths. J Math Pures Appl (9), 2009, 91(6): 598–613

5
Duistermaat J J. On the Morse index in variational calculus. Adv Math, 1976, 21(2): 173–195

DOI

6
Ekeland I. Convexity Methods in Hamiltonian Mechanics. Ergeb Math Grenzgeb (3), Vol 19. Berlin: Springer-Verlag, 1990

DOI

7
Hofer H, Zehnder E. Symplectic Invariants and Hamiltonian Dynamics. Modern Birkhäuser Classics. Basel: Birkhäuser Verlag, 2011

DOI

8
Hörmander L. Fourier integral operators. I. Acta Math, 1971, 127(1-2): 79–183

DOI

9
Kato T. Perturbation Theory for Linear Operators. Berlin: Springer, 1995

DOI

10
Kingman J F C. The ergodic theory of subadditive stochastic processes. J Roy Stat Soc Ser B, 1968, 30: 499–510

11
Lee J M. Introduction to Smooth Manifolds. Grad Texts in Math, Vol 218. New York: Springer-Verlag, 2003

DOI

12
Liu C. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin Dyn Syst, 2010, 27(1): 337–355

DOI

13
Liu C, Zhang D. Iteration theory of L-index and multiplicity of brake orbits. J Differential Equations, 2014, 257(4): 1194–1245

DOI

14
Liu C, Zhang D. Seifert conjecture in the even convex case. Commun Pure Appl Math, 2014, 67(10): 1563–1604

DOI

15
Long Y. The minimal period problem of classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire, 1993, 10(6): 605–626

DOI

16
Long Y. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 27. Basel: Birkhäuser Verlag, 2002

DOI

17
Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203(2): 568–635

DOI

18
Salamon D, Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun Pure Appl Math, 1992, 45(10): 1303–1360

DOI

19
Zhu C. A generalized Morse index theorem. In: Booβ-Bavnbek B, Klimek S, Lesch M, Zhang W P, eds. Analysis, Geometry and Topology of Elliptic Operators. Hackensack:World Sci Publ, 2006, 493–540

DOI

Outlines

/