Hörmander index in finite-dimensional case
Yuting ZHOU, Li WU, Chaofeng ZHU
Hörmander index in finite-dimensional case
We calculate the Hörmander index in the finite-dimensional case. Then we use the result to give some iteration inequalities, and prove almost existence of mean indices for given complete autonomous Hamiltonian system on compact symplectic manifold with symplectic trivial tangent bundle and given autonomous Hamiltonian system on regular compact energy hypersurface of symplectic manifold with symplectic trivial tangent bundle.
Maslov index / Hörmander index / Maslov-type index / symplectic reduction
[1] |
Booss-Bavnbek B, Furutani K. Symplectic functional analysis and spectral invariants. In: Booss-Bavnbek B, Wojciechowski K, eds. Geometric Aspects of Partial Differential Equations. Contemp Math, Vol 242. Providence: Amer Math Soc, 1999, 53–83
CrossRef
Google scholar
|
[2] |
Booß-Bavnbek B, Zhu C. The Maslov index in weak symplectic functional analysis. Ann Global Anal Geom, 2013, 44: 283–318
CrossRef
Google scholar
|
[3] |
Booß-Bavnbek B, Zhu C. Maslov Index in Symplectic Banach Spaces. Mem Amer Math Soc (to appear), arXiv: 1406.1569v4
CrossRef
Google scholar
|
[4] |
de Gosson M. On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths. J Math Pures Appl (9), 2009, 91(6): 598–613
|
[5] |
Duistermaat J J. On the Morse index in variational calculus. Adv Math, 1976, 21(2): 173–195
CrossRef
Google scholar
|
[6] |
Ekeland I. Convexity Methods in Hamiltonian Mechanics. Ergeb Math Grenzgeb (3), Vol 19. Berlin: Springer-Verlag, 1990
CrossRef
Google scholar
|
[7] |
Hofer H, Zehnder E. Symplectic Invariants and Hamiltonian Dynamics. Modern Birkhäuser Classics. Basel: Birkhäuser Verlag, 2011
CrossRef
Google scholar
|
[8] |
Hörmander L. Fourier integral operators. I. Acta Math, 1971, 127(1-2): 79–183
CrossRef
Google scholar
|
[9] |
Kato T. Perturbation Theory for Linear Operators. Berlin: Springer, 1995
CrossRef
Google scholar
|
[10] |
Kingman J F C. The ergodic theory of subadditive stochastic processes. J Roy Stat Soc Ser B, 1968, 30: 499–510
|
[11] |
Lee J M. Introduction to Smooth Manifolds. Grad Texts in Math, Vol 218. New York: Springer-Verlag, 2003
CrossRef
Google scholar
|
[12] |
Liu C. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin Dyn Syst, 2010, 27(1): 337–355
CrossRef
Google scholar
|
[13] |
Liu C, Zhang D. Iteration theory of L-index and multiplicity of brake orbits. J Differential Equations, 2014, 257(4): 1194–1245
CrossRef
Google scholar
|
[14] |
Liu C, Zhang D. Seifert conjecture in the even convex case. Commun Pure Appl Math, 2014, 67(10): 1563–1604
CrossRef
Google scholar
|
[15] |
Long Y. The minimal period problem of classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire, 1993, 10(6): 605–626
CrossRef
Google scholar
|
[16] |
Long Y. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 27. Basel: Birkhäuser Verlag, 2002
CrossRef
Google scholar
|
[17] |
Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203(2): 568–635
CrossRef
Google scholar
|
[18] |
Salamon D, Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun Pure Appl Math, 1992, 45(10): 1303–1360
CrossRef
Google scholar
|
[19] |
Zhu C. A generalized Morse index theorem. In: Booβ-Bavnbek B, Klimek S, Lesch M, Zhang W P, eds. Analysis, Geometry and Topology of Elliptic Operators. Hackensack:World Sci Publ, 2006, 493–540
CrossRef
Google scholar
|
/
〈 | 〉 |