Hörmander index in finite-dimensional case

Yuting ZHOU , Li WU , Chaofeng ZHU

Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 725 -761.

PDF (326KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 725 -761. DOI: 10.1007/s11464-018-0702-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Hörmander index in finite-dimensional case

Author information +
History +
PDF (326KB)

Abstract

We calculate the Hörmander index in the finite-dimensional case. Then we use the result to give some iteration inequalities, and prove almost existence of mean indices for given complete autonomous Hamiltonian system on compact symplectic manifold with symplectic trivial tangent bundle and given autonomous Hamiltonian system on regular compact energy hypersurface of symplectic manifold with symplectic trivial tangent bundle.

Keywords

Maslov index / Hörmander index / Maslov-type index / symplectic reduction

Cite this article

Download citation ▾
Yuting ZHOU, Li WU, Chaofeng ZHU. Hörmander index in finite-dimensional case. Front. Math. China, 2018, 13(3): 725-761 DOI:10.1007/s11464-018-0702-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Booss-Bavnbek B, Furutani K. Symplectic functional analysis and spectral invariants. In: Booss-Bavnbek B, Wojciechowski K, eds. Geometric Aspects of Partial Differential Equations. Contemp Math, Vol 242. Providence: Amer Math Soc, 1999, 53–83

[2]

Booß-Bavnbek B, Zhu C. The Maslov index in weak symplectic functional analysis. Ann Global Anal Geom, 2013, 44: 283–318

[3]

Booß-Bavnbek B, Zhu C. Maslov Index in Symplectic Banach Spaces. Mem Amer Math Soc (to appear), arXiv: 1406.1569v4

[4]

de Gosson M. On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths. J Math Pures Appl (9), 2009, 91(6): 598–613

[5]

Duistermaat J J. On the Morse index in variational calculus. Adv Math, 1976, 21(2): 173–195

[6]

Ekeland I. Convexity Methods in Hamiltonian Mechanics. Ergeb Math Grenzgeb (3), Vol 19. Berlin: Springer-Verlag, 1990

[7]

Hofer H, Zehnder E. Symplectic Invariants and Hamiltonian Dynamics. Modern Birkhäuser Classics. Basel: Birkhäuser Verlag, 2011

[8]

Hörmander L. Fourier integral operators. I. Acta Math, 1971, 127(1-2): 79–183

[9]

Kato T. Perturbation Theory for Linear Operators. Berlin: Springer, 1995

[10]

Kingman J F C. The ergodic theory of subadditive stochastic processes. J Roy Stat Soc Ser B, 1968, 30: 499–510

[11]

Lee J M. Introduction to Smooth Manifolds. Grad Texts in Math, Vol 218. New York: Springer-Verlag, 2003

[12]

Liu C. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin Dyn Syst, 2010, 27(1): 337–355

[13]

Liu C, Zhang D. Iteration theory of L-index and multiplicity of brake orbits. J Differential Equations, 2014, 257(4): 1194–1245

[14]

Liu C, Zhang D. Seifert conjecture in the even convex case. Commun Pure Appl Math, 2014, 67(10): 1563–1604

[15]

Long Y. The minimal period problem of classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire, 1993, 10(6): 605–626

[16]

Long Y. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 27. Basel: Birkhäuser Verlag, 2002

[17]

Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203(2): 568–635

[18]

Salamon D, Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun Pure Appl Math, 1992, 45(10): 1303–1360

[19]

Zhu C. A generalized Morse index theorem. In: Booβ-Bavnbek B, Klimek S, Lesch M, Zhang W P, eds. Analysis, Geometry and Topology of Elliptic Operators. Hackensack:World Sci Publ, 2006, 493–540

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (326KB)

677

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/