RESEARCH ARTICLE

Oscillatory hyper-Hilbert transform along curves on modulation spaces

  • Xiaomei WU , 1 ,
  • Dashan FAN 2
Expand
  • 1. Xingzhi College, Zhejiang Normal University, Jinhua 321004, China
  • 2. Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Received date: 30 Oct 2017

Accepted date: 20 Jan 2018

Published date: 11 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We consider the boundedness of the n-dimension oscillatory hyper-Hilbert transform along homogeneous curves on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces. The main theorems signicantly improve some known results.

Cite this article

Xiaomei WU , Dashan FAN . Oscillatory hyper-Hilbert transform along curves on modulation spaces[J]. Frontiers of Mathematics in China, 2018 , 13(3) : 647 -666 . DOI: 10.1007/s11464-018-0688-x

1
Borup L, Nielsen M. Boundedness for pseudodifferential operators on multivariate α-modulation spaces. Ark Mat, 2006, 44: 241–259

2
Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389–416

3
Chen J C, Fan D S, Wang M, Zhu X R. Lp bounds for oscillatory Hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136(9): 3145–3153

4
Chen J C, Fan D S, Zhu X R. Sharp L2 boundedness of the oscillatory hyper-Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(4): 653–658

5
Cheng M F. Hypersingular integral operators on modulation spaces for 0<p<1. J Inequal Appl, 2012, 165, https://doi.org/10.1186/1029-242X-2012-165

DOI

6
Cheng M F, Zhang Z Q. Hypersingular integrals along homogeneous curves on modulation spaces. Acta Math Sinica (Chin Ser), 2010, 53(3): 531–540 (in Chinese)

7
Gröbner P. Banachraume glatter funtionen and zerlegungsmethoden. Ph D Thesis, Univ of Vienna, Austria, 1992

8
Guo W C, Fan D S, Wu H X, Zhao G P. Sharpness of complex interpolation on α-modulation spaces. J Fourier Anal Appl, 2016, 22(2): 427–461

9
Han J S, Wang B X.α modulation spaces (I) embedding, interpolation and algebra properties. J Math Soc Japan, 2014, 66(4): 1315–1373

10
Huang Q, Chen J C. Cauchy problem for dispersive equations in α-modulation spaces. Electron J Differential Equations, 2014, (158): 1–10

11
Huang Q, Fan D S, Chen J C. Critical exponent for evolution equations in modulation spaces. J Math Anal Appl, 2016, 443: 230–242

12
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

13
Wang B X, Huo Z H, Hao C C, Guo Z H. Harmonic Analysis Method for Nonlinear Evolution Equations. I. Hackensack: World Scientific, 2011

14
Wu X M, Chen J C. Boundedness of fractional integral operators on α-modulation spaces. Appl Math J Chinese Univ, 2014, 29(3): 339–351

15
Wu X M, Yu X. Strongly singular integrals along curves on α-modulation spaces. J Inequal Appl, 2017, 185, https://doi.org/10.1186/s13660-017-1458-0

DOI

16
Zhao G P, Chen J C, Fan D S, Guo W C. Unimodular Fourier multipliers on homogeneous Besov spaces. J Math Anal Appl, 2015, 425: 536–547

17
Zielinski M. Highly oscillatory singular integrals along curves. Ph D Thesis, Univ of Wisconsin-Madison, WI, USA, 1985

Outlines

/