Oscillatory hyper-Hilbert transform along curves on modulation spaces

Xiaomei WU, Dashan FAN

PDF(338 KB)
PDF(338 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 647-666. DOI: 10.1007/s11464-018-0688-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillatory hyper-Hilbert transform along curves on modulation spaces

Author information +
History +

Abstract

We consider the boundedness of the n-dimension oscillatory hyper-Hilbert transform along homogeneous curves on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces. The main theorems signicantly improve some known results.

Keywords

Oscillatory hyper-Hilbert transform / inhomogeneous Besov spaces / -modulation spaces / homogeneous curves

Cite this article

Download citation ▾
Xiaomei WU, Dashan FAN. Oscillatory hyper-Hilbert transform along curves on modulation spaces. Front. Math. China, 2018, 13(3): 647‒666 https://doi.org/10.1007/s11464-018-0688-x

References

[1]
Borup L, Nielsen M. Boundedness for pseudodifferential operators on multivariate α-modulation spaces. Ark Mat, 2006, 44: 241–259
[2]
Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389–416
[3]
Chen J C, Fan D S, Wang M, Zhu X R. Lp bounds for oscillatory Hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136(9): 3145–3153
[4]
Chen J C, Fan D S, Zhu X R. Sharp L2 boundedness of the oscillatory hyper-Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(4): 653–658
[5]
Cheng M F. Hypersingular integral operators on modulation spaces for 0<p<1. J Inequal Appl, 2012, 165, https://doi.org/10.1186/1029-242X-2012-165
CrossRef Google scholar
[6]
Cheng M F, Zhang Z Q. Hypersingular integrals along homogeneous curves on modulation spaces. Acta Math Sinica (Chin Ser), 2010, 53(3): 531–540 (in Chinese)
[7]
Gröbner P. Banachraume glatter funtionen and zerlegungsmethoden. Ph D Thesis, Univ of Vienna, Austria, 1992
[8]
Guo W C, Fan D S, Wu H X, Zhao G P. Sharpness of complex interpolation on α-modulation spaces. J Fourier Anal Appl, 2016, 22(2): 427–461
[9]
Han J S, Wang B X.α modulation spaces (I) embedding, interpolation and algebra properties. J Math Soc Japan, 2014, 66(4): 1315–1373
[10]
Huang Q, Chen J C. Cauchy problem for dispersive equations in α-modulation spaces. Electron J Differential Equations, 2014, (158): 1–10
[11]
Huang Q, Fan D S, Chen J C. Critical exponent for evolution equations in modulation spaces. J Math Anal Appl, 2016, 443: 230–242
[12]
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
[13]
Wang B X, Huo Z H, Hao C C, Guo Z H. Harmonic Analysis Method for Nonlinear Evolution Equations. I. Hackensack: World Scientific, 2011
[14]
Wu X M, Chen J C. Boundedness of fractional integral operators on α-modulation spaces. Appl Math J Chinese Univ, 2014, 29(3): 339–351
[15]
Wu X M, Yu X. Strongly singular integrals along curves on α-modulation spaces. J Inequal Appl, 2017, 185, https://doi.org/10.1186/s13660-017-1458-0
CrossRef Google scholar
[16]
Zhao G P, Chen J C, Fan D S, Guo W C. Unimodular Fourier multipliers on homogeneous Besov spaces. J Math Anal Appl, 2015, 425: 536–547
[17]
Zielinski M. Highly oscillatory singular integrals along curves. Ph D Thesis, Univ of Wisconsin-Madison, WI, USA, 1985

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(338 KB)

Accesses

Citations

Detail

Sections
Recommended

/