RESEARCH ARTICLE

Commutator of Riesz potential in p-adic generalized Morrey spaces

  • Huixia MO ,
  • Xiaojuan WANG ,
  • Ruiqing MA
Expand
  • School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 13 Jul 2017

Accepted date: 21 Mar 2018

Published date: 11 Jun 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Suppose that Ipα is the p-adic Riesz potential. In this paper, we established the boundedness of Ipα on the p-adic generalized Morrey spaces, as well as the boundedness of the commutators generated by the p-adic Riesz potential Ipα and p-adic generalized Campanato functions.

Cite this article

Huixia MO , Xiaojuan WANG , Ruiqing MA . Commutator of Riesz potential in p-adic generalized Morrey spaces[J]. Frontiers of Mathematics in China, 2018 , 13(3) : 633 -645 . DOI: 10.1007/s11464-018-0696-x

1
Campanato S. Proprietà di Hölderianità di alcune classi di funzioni. Ann Scuola Norm Sup Pisa, 1963, 17(1-2): 175–188

2
Chuong N M. Harmonic, Wavelet and p-Adic Analysis. Singapore: World Scientific, 2007

DOI

3
Haran S. Riesz potentials and explicit sums in arithmetic. Invent Math, 1990, 101(1): 697–703

DOI

4
Haran S. Analytic potential theory over the p-adics. Ann Inst Fourier, 1993, 43(4): 905–944

DOI

5
Kim Y C. A simple proof of the p-adic version of the Sobolev embedding theorem. Commun Korean Math Soc, 2010, 25(1): 27–36

DOI

6
Morrey C. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43(1): 126–166

DOI

7
Nakai E. Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math Nachr, 1994, 166(1): 95–103

DOI

8
Peetre J. On the theory of Lp,λspaces. J Funct Anal, 1969, 4(1): 71–87

DOI

9
Robert A M. A Course in p-Adic Analysis. Berlin: Springer Science & Business Media, 2013

10
Schikhof W H. Ultrametric Calculus: An Introduction to p-adic Analysis. Cambridge: Cambridge Univ Press, 2007

11
Taibleson M H. Fourier Analysis on Local Fields. Princeton: Princeton Univ Press, 2015

12
Vladimirov V S, Volovich I V, Zelenov E I. p-Adic Analysis and Mathematical Physics. Singapore: World Scientific, 1994

13
Volosivets S S. Generalized fractional integrals in p-adic Morrey and Herz spaces. p-Adic Numbers Ultrametric Anal Appl, 2017, 9(1): 53–61

14
Wu Q Y, Fu Z W. Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces. J Funct Spaces Appl, 2015, 2015: 419532

15
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40(2): 635–654

DOI

16
Wu Q Y, Mi L, Fu Z W. Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J Funct Spaces Appl, 2013, 2013: 359193

Outlines

/