RESEARCH ARTICLE

Poincaré polynomials of moduli spaces of stable maps into flag manifolds

  • Xiaobo ZHUANG
Expand
  • School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received date: 08 Jul 2016

Accepted date: 29 Jan 2018

Published date: 28 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

By using the Bialynicki-Birula decomposition and holomorphic Lefschetz formula, we calculate the Poincaré polynomials of the moduli spaces in low degrees.

Cite this article

Xiaobo ZHUANG . Poincaré polynomials of moduli spaces of stable maps into flag manifolds[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 483 -508 . DOI: 10.1007/s11464-018-0689-9

1
Agrawal S. The Euler characteristic of the moduli space of stable maps into a Grassmannian. Undergraduate Thesis, Univ of California, San Diego, 2011

2
Atiyah M F, Singer I M. The index of elliptic operators: III. Ann of Math (2), 1968, 87(3): 546–604

3
Behrend K. Cohomology of stacks. In: Intersection Theory and Moduli. ICTP Lect Notes, Vol 19. 2004, 249–294

4
Bertram A. Quantum schubert calculus. Adv Math, 1997, 128(2): 289–305

DOI

5
Bertram A. Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian. Internat J Math, 1994, 5(6): 811–825

DOI

6
Bertram A, Ciocan-Fontanine I, Kim B. Two proofs of a conjecture of Hori and Vafa. Duke Math J, 2005, 126(1): 101–136

DOI

7
Bialynicki-Birula A. Some theorems on actions of algebraic groups. Ann of Math, 1973, 98(3): 480–497

DOI

8
Bialynicki-Birula A. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull Acad Polon Sci Sér Sci Math Astronom Phys, 1976, 24(9): 667–674

9
Carrell J B. Torus Actions and Cohomology. In: Gamkrelidze R V, Popov V L, eds. Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action. Encyclopaedia Math Sci, Vol 131. Berlin: Springer, 2002

DOI

10
Chen L. Poincaré polynomials of hyperquot schemes. Math Ann, 2001, 321(2): 235–251

DOI

11
Ciocan-Fontanine I. On quantum cohomology rings of partial flag varieties. Duke Math J, 1999, 98(3): 485–524

DOI

12
Ciocan-Fontanine I. The quantum cohomology ring of flag varieties. Trans Amer Math Soc, 1999, 351(7): 2695–2729

DOI

13
Edwards G. On genus zero stable maps to the flag variety. Undergraduate Thesis, Univ of California, San Diego, 2013

14
Fulton W, Pandharipande R. Notes on stable maps and quantum cohomology. arXiv: alg-geom/9608011

15
Hori K. Mirror Symmetry, Vol 1. Providence: Amer Math Soc, 2003

16
Kac V, Cheung P. Quantum Calculus. Berlin: Springer, 2002

DOI

17
Kim B. Quot schemes for flags and Gromov invariants for flag varieties. arXiv: alg-geom/9512003

18
Lian B H, Liu C-H, Liu K F, Yau S-T. The S1 fixed points in Quot-schemes and mirror principle computations. In: Cutkosky S D, Edidin D, Qin Z B, Zhang Q, eds. Vector Bundles and Representation Theory. Contemp Math, Vol 322. Providence: Amer Math Soc, 2003, 165–194

DOI

19
Manin Yu I. Stable maps of genus zero to flag spaces. Topol Methods Nonlinear Anal, 1998, (2): 207–217

DOI

20
Mart´ın A L. Poincaŕe polynomials of stable map spaces to Grassmannians. In: Rendiconti del Seminario Matematico della Universit`a di Padova, Tome 131. 2014, 193–208

21
Oprea D. Tautological classes on the moduli spaces of stable maps to Pr via torus actions. Adv Math, 2006, 207(2): 661–690

DOI

22
Skowera J. Bialynicki-Birula decomposition of Deligne-Mumford stacks. Proc Amer Math Soc, 2013, 141(6): 1933–1937

DOI

23
Strømme S A. On parametrized rational curves in Grassmann varieties. In: Ghione F, Peskine C, Sernesi E, eds. Space Curves. Lecture Notes in Math, Vol 1266. Berlin: Springer, 1987, 251–272

Outlines

/