Poincaré polynomials of moduli spaces of stable maps into flag manifolds

Xiaobo ZHUANG

PDF(273 KB)
PDF(273 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 483-508. DOI: 10.1007/s11464-018-0689-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Poincaré polynomials of moduli spaces of stable maps into flag manifolds

Author information +
History +

Abstract

By using the Bialynicki-Birula decomposition and holomorphic Lefschetz formula, we calculate the Poincaré polynomials of the moduli spaces in low degrees.

Keywords

Bialynicki-Birula decomposition / Poincaré polynomial

Cite this article

Download citation ▾
Xiaobo ZHUANG. Poincaré polynomials of moduli spaces of stable maps into flag manifolds. Front. Math. China, 2018, 13(2): 483‒508 https://doi.org/10.1007/s11464-018-0689-9

References

[1]
Agrawal S. The Euler characteristic of the moduli space of stable maps into a Grassmannian. Undergraduate Thesis, Univ of California, San Diego, 2011
[2]
Atiyah M F, Singer I M. The index of elliptic operators: III. Ann of Math (2), 1968, 87(3): 546–604
[3]
Behrend K. Cohomology of stacks. In: Intersection Theory and Moduli. ICTP Lect Notes, Vol 19. 2004, 249–294
[4]
Bertram A. Quantum schubert calculus. Adv Math, 1997, 128(2): 289–305
CrossRef Google scholar
[5]
Bertram A. Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian. Internat J Math, 1994, 5(6): 811–825
CrossRef Google scholar
[6]
Bertram A, Ciocan-Fontanine I, Kim B. Two proofs of a conjecture of Hori and Vafa. Duke Math J, 2005, 126(1): 101–136
CrossRef Google scholar
[7]
Bialynicki-Birula A. Some theorems on actions of algebraic groups. Ann of Math, 1973, 98(3): 480–497
CrossRef Google scholar
[8]
Bialynicki-Birula A. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull Acad Polon Sci Sér Sci Math Astronom Phys, 1976, 24(9): 667–674
[9]
Carrell J B. Torus Actions and Cohomology. In: Gamkrelidze R V, Popov V L, eds. Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action. Encyclopaedia Math Sci, Vol 131. Berlin: Springer, 2002
CrossRef Google scholar
[10]
Chen L. Poincaré polynomials of hyperquot schemes. Math Ann, 2001, 321(2): 235–251
CrossRef Google scholar
[11]
Ciocan-Fontanine I. On quantum cohomology rings of partial flag varieties. Duke Math J, 1999, 98(3): 485–524
CrossRef Google scholar
[12]
Ciocan-Fontanine I. The quantum cohomology ring of flag varieties. Trans Amer Math Soc, 1999, 351(7): 2695–2729
CrossRef Google scholar
[13]
Edwards G. On genus zero stable maps to the flag variety. Undergraduate Thesis, Univ of California, San Diego, 2013
[14]
Fulton W, Pandharipande R. Notes on stable maps and quantum cohomology. arXiv: alg-geom/9608011
[15]
Hori K. Mirror Symmetry, Vol 1. Providence: Amer Math Soc, 2003
[16]
Kac V, Cheung P. Quantum Calculus. Berlin: Springer, 2002
CrossRef Google scholar
[17]
Kim B. Quot schemes for flags and Gromov invariants for flag varieties. arXiv: alg-geom/9512003
[18]
Lian B H, Liu C-H, Liu K F, Yau S-T. The S1 fixed points in Quot-schemes and mirror principle computations. In: Cutkosky S D, Edidin D, Qin Z B, Zhang Q, eds. Vector Bundles and Representation Theory. Contemp Math, Vol 322. Providence: Amer Math Soc, 2003, 165–194
CrossRef Google scholar
[19]
Manin Yu I. Stable maps of genus zero to flag spaces. Topol Methods Nonlinear Anal, 1998, (2): 207–217
CrossRef Google scholar
[20]
Mart´ın A L. Poincaŕe polynomials of stable map spaces to Grassmannians. In: Rendiconti del Seminario Matematico della Universit`a di Padova, Tome 131. 2014, 193–208
[21]
Oprea D. Tautological classes on the moduli spaces of stable maps to Pr via torus actions. Adv Math, 2006, 207(2): 661–690
CrossRef Google scholar
[22]
Skowera J. Bialynicki-Birula decomposition of Deligne-Mumford stacks. Proc Amer Math Soc, 2013, 141(6): 1933–1937
CrossRef Google scholar
[23]
Strømme S A. On parametrized rational curves in Grassmann varieties. In: Ghione F, Peskine C, Sernesi E, eds. Space Curves. Lecture Notes in Math, Vol 1266. Berlin: Springer, 1987, 251–272

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(273 KB)

Accesses

Citations

Detail

Sections
Recommended

/