RESEARCH ARTICLE

Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity

  • Liang WEI ,
  • Zhiping LI
Expand
  • LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, China

Received date: 29 Mar 2017

Accepted date: 18 Sep 2017

Published date: 12 Jan 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

A Fourier-Chebyshev spectral method is proposed in this paper for solving the cavitation problem in nonlinear elasticity. The interpolation error for the cavitation solution is analyzed, the elastic energy error estimate for the discrete cavitation solution is obtained, and the convergence of the method is proved. An algorithm combined a gradient type method with a damped quasi-Newton method is applied to solve the discretized nonlinear equilibrium equations. Numerical experiments show that the Fourier-Chebyshev spectral method is efficient and capable of producing accurate numerical cavitation solutions.

Cite this article

Liang WEI , Zhiping LI . Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 203 -226 . DOI: 10.1007/s11464-017-0664-x

1
Adams R A.Sobolev Spaces. New York: Academic, 1975

2
Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc Lond Ser A, 1982, 306: 557–611

DOI

3
Ball J M, Currie J C,Olver P J.Null Lagrangians, weak continuity, and variational problems of arbitrary order. J Funct Anal, 1981, 41: 135–174

DOI

4
Brezis H. Analyse Fonctionnelle: Théorie et Applications. Paris: Masson, 1983

5
Bucknall C B, Karpodinis A, Zhang X C. A model for particle cavitation in rubber toughened plastics. J Mater Sci, 1994, 29(13): 3377–3383

DOI

6
Celada P, Perrotta S. Polyconvex energies and cavitation. NoDEA Nonlinear Differential Equations Appl, 2013, 20: 295–321

DOI

7
Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension. Proc R Soc Lond Ser A, 1958, 249: 195–205

8
Gent A N, Park B. Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci, 1984, 19: 1947–1956

DOI

9
Gottlieb S,Jung J H, Kim S.A review of David Gottliebs work on the resolution of the Gibbs phenomenon. Commun Comput Phys, 2011, 9: 497–519

DOI

10
Henao D. Cavitation, invertibility, and convergence of regularized minimizers in nonlinear elasticity. J Elast, 2009, 94: 55–68

DOI

11
Henao D, Mora-Corral C. Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch Ration Mech Anal, 2010, 197: 619–655

DOI

12
Henao D, Mora-Corral C. Fracture surfaces and the regularity of inverses for BV deformations. Arch Ration Mech Anal, 2011, 201: 575–629

DOI

13
Lavrentiev M. Sur quelques probl`emes du calcul des variations. Ann Mat Pura Appl, 1926, 4: 7–28

DOI

14
Lazzeri A, Bucknall C B. Dilatational bands in rubber-toughened polymers. J Mater Sci, 1993, 28: 6799–6808

DOI

15
Li J,Guo B. Fourier-Chebyshev pseudospectral method for three-dimensional Navier-Stokes equations. Japan J Indust Appl Math, 1997, 14: 329–356

DOI

16
Lian Y, Li Z. A dual-parametric finite element method for cavitation in nonlinear elasticity. J Comput Appl Math, 2011, 236: 834–842

DOI

17
Lian Y, Li Z. A numerical study on cavitations in nonlinear elasticity-defects and configurational forces. Math Models Methods Appl Sci, 2011, 21(12): 2551–2574

DOI

18
Meyer P A. Probability and Potentials. Waltham: Blaisdell, 1966

19
Negrón-Marrero P V, Betancourt O. The numerical computation of singular minimizers in two-dimensional elasticity. J Comput Phys, 1994, 113: 291–303

DOI

20
Negrón-Marrero P V, Sivaloganathan J. The numerical computation of the critical boundary displacement for radial cavitation. Math Mech Solids, 2009, 14: 696–726

DOI

21
Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 1999

DOI

22
Shen J. A new fast Chebyshev-Fourier algorithm for Poisson-type equations in polar geometries. Appl Numer Math, 2000, 33: 183–190

DOI

23
Shen J, Tang T, Wang L. Spectral Methods: Algorithms, Analysis and Applications. Heidelberg: Springer, 2011

DOI

24
Sivaloganathan J, Spector S J.On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J Elast, 2002, 67(1): 25–49

DOI

25
Sivaloganathan J, Spector S J,Tilakraj V. The convergence of regularized minimizers for cavitation problems in nonlinear elasticity. J Appl Math, 2006, 66: 736–757

DOI

26
Su C. The Numerical Analysis of Iso-parametric and Dual-parametric Finite Element Methods Applied in Cavitation. Ph D Dissertation. Beijing: Peking University, 2015 (in Chinese)

27
Su C, Li Z. Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity. SIAM J Numer Anal, 2015, 53(3): 1629–1649

DOI

28
Xu X, Henao D. An efficient numerical method for cavitation in nonlinear elasticity. Math Models Methods Appl Sci, 2011, 21(8): 1733–1760

DOI

Outlines

/