Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity

Liang WEI, Zhiping LI

PDF(773 KB)
PDF(773 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 203-226. DOI: 10.1007/s11464-017-0664-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity

Author information +
History +

Abstract

A Fourier-Chebyshev spectral method is proposed in this paper for solving the cavitation problem in nonlinear elasticity. The interpolation error for the cavitation solution is analyzed, the elastic energy error estimate for the discrete cavitation solution is obtained, and the convergence of the method is proved. An algorithm combined a gradient type method with a damped quasi-Newton method is applied to solve the discretized nonlinear equilibrium equations. Numerical experiments show that the Fourier-Chebyshev spectral method is efficient and capable of producing accurate numerical cavitation solutions.

Keywords

Fourier-Chebyshev spectral method / cavitation computation / nonlinear elasticity / interpolation error analysis / energy error estimate / convergence

Cite this article

Download citation ▾
Liang WEI, Zhiping LI. Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity. Front. Math. China, 2018, 13(1): 203‒226 https://doi.org/10.1007/s11464-017-0664-x

References

[1]
Adams R A.Sobolev Spaces. New York: Academic, 1975
[2]
Ball J M. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc Lond Ser A, 1982, 306: 557–611
CrossRef Google scholar
[3]
Ball J M, Currie J C,Olver P J.Null Lagrangians, weak continuity, and variational problems of arbitrary order. J Funct Anal, 1981, 41: 135–174
CrossRef Google scholar
[4]
Brezis H. Analyse Fonctionnelle: Théorie et Applications. Paris: Masson, 1983
[5]
Bucknall C B, Karpodinis A, Zhang X C. A model for particle cavitation in rubber toughened plastics. J Mater Sci, 1994, 29(13): 3377–3383
CrossRef Google scholar
[6]
Celada P, Perrotta S. Polyconvex energies and cavitation. NoDEA Nonlinear Differential Equations Appl, 2013, 20: 295–321
CrossRef Google scholar
[7]
Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension. Proc R Soc Lond Ser A, 1958, 249: 195–205
[8]
Gent A N, Park B. Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci, 1984, 19: 1947–1956
CrossRef Google scholar
[9]
Gottlieb S,Jung J H, Kim S.A review of David Gottliebs work on the resolution of the Gibbs phenomenon. Commun Comput Phys, 2011, 9: 497–519
CrossRef Google scholar
[10]
Henao D. Cavitation, invertibility, and convergence of regularized minimizers in nonlinear elasticity. J Elast, 2009, 94: 55–68
CrossRef Google scholar
[11]
Henao D, Mora-Corral C. Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch Ration Mech Anal, 2010, 197: 619–655
CrossRef Google scholar
[12]
Henao D, Mora-Corral C. Fracture surfaces and the regularity of inverses for BV deformations. Arch Ration Mech Anal, 2011, 201: 575–629
CrossRef Google scholar
[13]
Lavrentiev M. Sur quelques probl`emes du calcul des variations. Ann Mat Pura Appl, 1926, 4: 7–28
CrossRef Google scholar
[14]
Lazzeri A, Bucknall C B. Dilatational bands in rubber-toughened polymers. J Mater Sci, 1993, 28: 6799–6808
CrossRef Google scholar
[15]
Li J,Guo B. Fourier-Chebyshev pseudospectral method for three-dimensional Navier-Stokes equations. Japan J Indust Appl Math, 1997, 14: 329–356
CrossRef Google scholar
[16]
Lian Y, Li Z. A dual-parametric finite element method for cavitation in nonlinear elasticity. J Comput Appl Math, 2011, 236: 834–842
CrossRef Google scholar
[17]
Lian Y, Li Z. A numerical study on cavitations in nonlinear elasticity-defects and configurational forces. Math Models Methods Appl Sci, 2011, 21(12): 2551–2574
CrossRef Google scholar
[18]
Meyer P A. Probability and Potentials. Waltham: Blaisdell, 1966
[19]
Negrón-Marrero P V, Betancourt O. The numerical computation of singular minimizers in two-dimensional elasticity. J Comput Phys, 1994, 113: 291–303
CrossRef Google scholar
[20]
Negrón-Marrero P V, Sivaloganathan J. The numerical computation of the critical boundary displacement for radial cavitation. Math Mech Solids, 2009, 14: 696–726
CrossRef Google scholar
[21]
Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 1999
CrossRef Google scholar
[22]
Shen J. A new fast Chebyshev-Fourier algorithm for Poisson-type equations in polar geometries. Appl Numer Math, 2000, 33: 183–190
CrossRef Google scholar
[23]
Shen J, Tang T, Wang L. Spectral Methods: Algorithms, Analysis and Applications. Heidelberg: Springer, 2011
CrossRef Google scholar
[24]
Sivaloganathan J, Spector S J.On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J Elast, 2002, 67(1): 25–49
CrossRef Google scholar
[25]
Sivaloganathan J, Spector S J,Tilakraj V. The convergence of regularized minimizers for cavitation problems in nonlinear elasticity. J Appl Math, 2006, 66: 736–757
CrossRef Google scholar
[26]
Su C. The Numerical Analysis of Iso-parametric and Dual-parametric Finite Element Methods Applied in Cavitation. Ph D Dissertation. Beijing: Peking University, 2015 (in Chinese)
[27]
Su C, Li Z. Error analysis of a dual-parametric bi-quadratic FEM in cavitation computation in elasticity. SIAM J Numer Anal, 2015, 53(3): 1629–1649
CrossRef Google scholar
[28]
Xu X, Henao D. An efficient numerical method for cavitation in nonlinear elasticity. Math Models Methods Appl Sci, 2011, 21(8): 1733–1760
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(773 KB)

Accesses

Citations

Detail

Sections
Recommended

/