Frontiers of Mathematics in China >
Vanishing of stable homology with respect to a semidualizing module
Received date: 17 Sep 2016
Accepted date: 04 Sep 2017
Published date: 12 Jan 2018
Copyright
We investigate stable homology of modules over a commutative noetherian ring R with respect to a semidualzing module C, and give some vanishing results that improve/extend the known results. As a consequence, we show that the balance of the theory forces C to be trivial and R to be Gorenstein.
Key words: Stable homology; semidualizing module; proper resolution
Li LIANG . Vanishing of stable homology with respect to a semidualizing module[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 107 -127 . DOI: 10.1007/s11464-017-0661-0
1 |
Avramov L L, Veliche O. Stable cohomology over local rings. Adv Math, 2007, 213: 93–139
|
2 |
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Stable homology over associate rings. Trans Amer Math Soc, 2017, 369: 8061–8086
|
3 |
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Complete homology over associate rings. Israel J Math (to appear)
|
4 |
Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J Algebra, 2006, 302: 231–279
|
5 |
Emmanouil I. Mittag-Leffler condition and the vanishing of lim1←. Topology, 1996, 35: 267–271
|
6 |
Emmanouil I, Manousaki P. On the stable homology of modules. J Pure Appl Algebra, 2017, 221: 2198–2219
|
7 |
Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000
|
8 |
Foxby H B. Gorenstein modules and related modules. Math Scand, 1972, 31: 267–284
|
9 |
Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82: 39–64
|
10 |
Golod E S. G-dimension and generalized perfect ideals. Trudy Matematicheskogo Instituta Imeni VA Steklova, 1984, 165: 62–66
|
11 |
Grothendieck A, Dieudonné J. Éléments de Géométrie Algébrique, III. Publ Math IHES, No 11. Paris: IHES, 1961
|
12 |
Holm H, White D. Foxby equivalence over associative rings. J Math Kyoto Univ, 2007, 47: 781–808
|
13 |
Nucinkis B E A. Complete cohomology for arbitrary rings using injectives. J Pure Appl Algebra, 1998, 131: 297–318
|
14 |
Roos J E. Sur les foncteurs dérivés de lim←. Applications, C R Acad Sci Paris, 1961, 252: 3702–3704
|
15 |
Salimi M, Sather-Wagstaff S, Tavasoli E, Yassemi S. Relative Tor functors with respect to a semidualizing module. Algebr Represent Theory, 2014, 17: 103–120
|
16 |
Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14: 403–428
|
17 |
Sather-Wagstaff S, Yassemi S. Modules of finite homological dimension with respect to a semidualizing module. Arch Math, 2009, 93: 111–121
|
18 |
Takahashi R, White D. Homological aspects of semidualizing modules. Math Scand, 2010, 106: 5–22
|
19 |
Vasconcelos W V. Divisor Theory in Module Categories. North-Holland Math Stud, Vol 14. Amsterdam: North-Holland Publishing Co, 1974
|
20 |
Yeh Z Z. Higher Inverse Limits and Homology Theories. Thesis, Princeton Univ, 1959
|
/
〈 |
|
〉 |