RESEARCH ARTICLE

Vanishing of stable homology with respect to a semidualizing module

  • Li LIANG
Expand
  • School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 17 Sep 2016

Accepted date: 04 Sep 2017

Published date: 12 Jan 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We investigate stable homology of modules over a commutative noetherian ring R with respect to a semidualzing module C, and give some vanishing results that improve/extend the known results. As a consequence, we show that the balance of the theory forces C to be trivial and R to be Gorenstein.

Cite this article

Li LIANG . Vanishing of stable homology with respect to a semidualizing module[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 107 -127 . DOI: 10.1007/s11464-017-0661-0

1
Avramov L L, Veliche O. Stable cohomology over local rings. Adv Math, 2007, 213: 93–139

DOI

2
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Stable homology over associate rings. Trans Amer Math Soc, 2017, 369: 8061–8086

DOI

3
Celikbas O, Christensen L W, Liang L, Piepmeyer G. Complete homology over associate rings. Israel J Math (to appear)

4
Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J Algebra, 2006, 302: 231–279

DOI

5
Emmanouil I. Mittag-Leffler condition and the vanishing of lim⁡1←. Topology, 1996, 35: 267–271

DOI

6
Emmanouil I, Manousaki P. On the stable homology of modules. J Pure Appl Algebra, 2017, 221: 2198–2219

DOI

7
Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000

DOI

8
Foxby H B. Gorenstein modules and related modules. Math Scand, 1972, 31: 267–284

DOI

9
Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82: 39–64

DOI

10
Golod E S. G-dimension and generalized perfect ideals. Trudy Matematicheskogo Instituta Imeni VA Steklova, 1984, 165: 62–66

11
Grothendieck A, Dieudonné J. Éléments de Géométrie Algébrique, III. Publ Math IHES, No 11. Paris: IHES, 1961

12
Holm H, White D. Foxby equivalence over associative rings. J Math Kyoto Univ, 2007, 47: 781–808

DOI

13
Nucinkis B E A. Complete cohomology for arbitrary rings using injectives. J Pure Appl Algebra, 1998, 131: 297–318

DOI

14
Roos J E. Sur les foncteurs dérivés de lim⁡←. Applications, C R Acad Sci Paris, 1961, 252: 3702–3704

15
Salimi M, Sather-Wagstaff S, Tavasoli E, Yassemi S. Relative Tor functors with respect to a semidualizing module. Algebr Represent Theory, 2014, 17: 103–120

DOI

16
Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14: 403–428

DOI

17
Sather-Wagstaff S, Yassemi S. Modules of finite homological dimension with respect to a semidualizing module. Arch Math, 2009, 93: 111–121

DOI

18
Takahashi R, White D. Homological aspects of semidualizing modules. Math Scand, 2010, 106: 5–22

DOI

19
Vasconcelos W V. Divisor Theory in Module Categories. North-Holland Math Stud, Vol 14. Amsterdam: North-Holland Publishing Co, 1974

20
Yeh Z Z. Higher Inverse Limits and Homology Theories. Thesis, Princeton Univ, 1959

Outlines

/